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0. Introduction to this Syllabus

0.1 Purpose of this Document
This syllabus forms the basis for the International Software Testing Qualification at the Advanced Level for
Test Automation - Engineering. The ISTQB provides this syllabus as follows:
 To Member Boards, to translate into their local language and to accredit training providers.

National boards may adapt the syllabus to their particular language needs and modify the
references to adapt to their local publications.

 To Exam Boards, to derive examination questions in their local language adapted to the learning
objectives for each module.

 To training providers, to produce courseware and determine appropriate teaching methods.
 To certification candidates, to prepare for the exam (as part of a training course or

independently).
 To the international software and system engineering community, to advance the profession of

software and system testing, and as a basis for books and articles.

The ISTQB may allow other entities to use this syllabus for other purposes, provided they seek and obtain
prior written permission.

0.2 Scope of this Document

0.2.1 In Scope

This document describes the tasks of a test automation engineer (TAE) in designing, developing, and
maintaining test automation solutions. It focuses on the concepts, methods, tools, and processes for
automating dynamic functional tests and the relationship of those tests to test management, configuration
management, defect management, software development processes and quality assurance.

Methods described are generally applicable across variety of software lifecycle approaches (e.g., agile,
sequential, incremental, iterative), types of software systems (e.g., embedded, distributed, mobile) and test
types (functional and non-functional testing).

0.2.2 Out of Scope
The following aspects are out of scope for this Test Automation – Engineering syllabus:
 Test management, automated creation of test specifications and automated test generation.
 Tasks of test automation manager (TAM) in planning, supervising and adjusting the development

and evolution of test automation solutions.
 Specifics of automating non-functional tests (e.g., performance).
 Automation of static analysis (e.g., vulnerability analysis) and static test tools.
 Teaching of software engineering methods and programming (e.g., which standards to use and

which skills to have for realizing a test automation solution).
 Teaching of software technologies (e.g., which scripting techniques to use for implementing a test

automation solution).
 Selection of software testing products and services (e.g., which products and services to use for a

test automation solution).
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0.3 The Certified Tester Advanced Level Test Automation Engineer

0.3.1 Expectations
The Advanced Level qualification is aimed at people who wish to build on the knowledge and skills acquired
at the Foundation Level and develop further their expertise in one or more specific areas. The modules
offered at the Advanced Level Specialist cover a wide range of testing topics.

A Test Automation Engineer is one who has broad knowledge of testing in general, and an in-depth
understanding in the special area of test automation. An in-depth understanding is defined as having
sufficient knowledge of test automation theory and practice to be able to influence the direction that an
organization and/or project takes when designing, developing and maintaining test automation solutions for
functional tests.

The Advanced Level Modules Overview [ISTQB-AL-Modules] document describes the business outcomes
for this module.

0.3.2 Entry and Renewal Requirements
General entry criteria for the Advanced Level are described on the ISTQB web site [ISTQB-Web], Advanced
Level section.

In addition to these general entry criteria, candidates must hold the ISTQB Foundation Level certificate
[ISTQB-CTFL] to sit for the Advanced Level Test Automation Engineer certification exam.

0.3.3 Level of Knowledge

Learning objectives for this syllabus are captured at the beginning of each chapter for clear identification.
Each topic in the syllabus will be examined according to the learning objective assigned to it.

The cognitive levels assigned to learning objectives (“K-levels”) are described on the ISTQB web site
[ISTQB-Web].

0.3.4 Examination
The examination for this Advanced Level Certificate shall be based on this syllabus plus the Foundation
Level Syllabus [ISTQB-FL]. Answers to examination questions may require the use of material based on
more than one section of these syllabi.

The format of the examination is described on the ISTQB web site [ISTQB-Web], Advanced Level section.
Some helpful information for those taking exams is also included on the ISTQB web site.

0.3.5 Accreditation
An ISTQB Member Board may accredit training providers whose course material follows this syllabus.

The ISTQB web site [ISTQB-Web], Advanced Level section describes the specific rules which apply to
training providers for the accreditation of courses.
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0.4 Normative versus Informative Parts
Normative parts of the syllabus are examinable. These are:
 Learning objectives
 Keywords

The rest of the syllabus is informative and elaborates on the learning objectives.

0.5 Level of Detail
The level of detail in this syllabus allows internationally consistent teaching and examination. In order to
achieve this goal, the syllabus consists of:
 Learning objectives for each knowledge area, describing the cognitive learning outcome and

mindset to be achieved (these are normative)
 A list of information to teach, including a description of the key concepts to teach, sources such

as accepted literature or standards, and references to additional sources if required (these are
informative)

The syllabus content is not a description of the entire knowledge area of test automation engineering; it
reflects the level of detail to be covered in an accredited Advanced Level training course.

0.6 How this Syllabus is Organized
There are eight major chapters. The top level heading shows the time for the chapter. For example:

3. The Generic Test Automation Architecture 270 mins.

shows that Chapter 3 is intended to have a time of 270 minutes for teaching the material in the chapter.
Specific learning objectives are listed at the start of each chapter.

0.7 Terms, Definitions and Acronyms
Many terms used in the software literature are used interchangeably. The definitions in this Advanced Level
Syllabus are available in the Standard Glossary of Terms Used in Software Testing, published by the ISTQB
[ISTQB-Glossary].

Each of the keywords listed at the start of each chapter in this Advanced Level Syllabus is defined in
[ISTQB-Glossary].

The following acronyms are used in this document:
CLI Command Line Interface
EMTE Equivalent Manual Test Effort
gTAA Generic Test Automation Architecture (providing a blueprint for test automation solutions)
GUI Graphical User Interface
SUT system under test, see also test object
TAA Test Automation Architecture (an instantiation of gTAA to define the architecture of a TAS)
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TAE Test Automation Engineer (the person who is responsible for the design of a TAA, including the
implementation of the resulting TAS, its maintenance and technical evolution)

TAF Test Automation Framework (the environment required for test automation including test harnesses
and artifacts such as test libraries)

TAM Test Automation Manager (the person responsible for the planning and supervision of the
development and evolution of a TAS)

TAS Test Automation Solution (the realization/implementation of a TAA, including test harnesses and
artifacts such as test libraries)

UI User Interface
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1. Introduction and Objectives for Test Automation - 30 mins.
Keywords
API testing, CLI testing, GUI testing, System Under Test, test automation architecture, test automation
framework, test automation strategy, test automation, test script, testware

Learning Objectives for Introduction and Objectives for Test Automation

1.1 Purpose of Test Automation
ALTA-E-1.1.1 (K2) Explain the objectives, advantages, disadvantages and limitations of test automation

1.2 Success Factors in Test Automation
ALTA-E-1.2.1 (K2) Identify technical success factors of a test automation project
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1.1 Purpose of Test Automation
In software testing, test automation (which includes automated test execution) is one or more of the
following tasks:
 Using purpose built software tools to control and set up test preconditions
 Executing tests
 Comparing actual outcomes to predicted outcomes

A good practice is to separate the software used for testing from the system under test (SUT) itself to
minimize interference. There are exceptions, for example embedded systems where the test software
needs to be deployed to the SUT.

Test automation is expected to help run many test cases consistently and repeatedly on different versions
of the SUT and/or environments. But test automation is more than a mechanism for running a test suite
without human interaction. It involves a process of designing the testware, including:
 Software
 Documentation
 Test cases
 Test environments
 Test data

Testware is necessary for the testing activities that include:
 Implementing automated test cases
 Monitoring and controlling the execution of automated tests
 Interpreting, reporting and logging the automated test results

Test automation has different approaches for interacting with a SUT:
 Testing through the public interfaces to classes, modules or libraries of the SUT (API testing)
 Testing through the user interface of the SUT (e.g., GUI testing or CLI testing)
 Testing through a service or protocol

Objectives of test automation include:
 Improving test efficiency
 Providing wider function coverage
 Reducing the total test cost
 Performing tests that manual testers cannot
 Shortening the test execution period
 Increasing the test frequency/reducing the time required for test cycles

Advantages of test automation include:
 More tests can be run per build
 The possibility to create tests that cannot be done manually (real-time, remote, parallel tests)
 Tests can be more complex
 Tests run faster
 Tests are less subject to operator error
 More effective and efficient use of testing resources
 Quicker feedback regarding software quality
 Improved system reliability (e.g., repeatability, consistency)
 Improved consistency of tests
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Disadvantages of test automation include:
 Additional costs are involved
 Initial investment to setup TAS
 Requires additional technologies
 Team needs to have development and automation skills
 On-going TAS maintenance requirement
 Can distract from testing objectives, e.g., focusing on automating tests cases at the expense of

executing tests
 Tests can become more complex
 Additional errors may be introduced by automation

Limitations of test automation include:
 Not all manual tests can be automated
 The automation can only check machine-interpretable results
 The automation can only check actual results that can be verified by an automated test oracle
 Not a replacement for exploratory testing

1.2 Success Factors in Test Automation
The following success factors apply to test automation projects that are in operation and therefore the focus
is on influences that impact on the long term success of the project. Factors influencing the success of test
automation projects at the pilot stage are not considered here.

Major success factors for test automation include the following:

Test Automation Architecture (TAA)

The Test Automation Architecture (TAA) is very closely aligned with the architecture of a software
product. It should be clear which functional and non-functional requirements the architecture is to
support. Typically this will be the most important requirements.

Often TAA is designed for maintainability, performance and learnability. (See ISO/IEC 25000:2014
for details of these and other non-functional characteristics.) It is helpful to involve software
engineers who understand the architecture of the SUT.

SUT Testability

The SUT needs to be designed for testability that supports automated testing. In the case of GUI
testing, this could mean that the SUT should decouple as much as possible the GUI interaction and
data from the appearance of the graphical interface. In the case of API testing, this could mean that
more classes, modules or the command-line interface need to be exposed as public so that they
can be tested.

The testable parts of the SUT should be targeted first. Generally, a key factor in the success of test
automation lies in the ease of implementing automated test scripts. With this goal in mind, and also
to provide a successful proof of concept, the Test Automation Engineer (TAE) needs to identify
modules or components of the SUT that are easily tested with automation and start from there.
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Test Automation Strategy

A practical and consistent test automation strategy that addresses maintainability and consistency
of the SUT.

It may not be possible to apply the test automation strategy in the same way to both old and new
parts of the SUT. When creating the automation strategy, consider the costs, benefits and risks of
applying it to different parts of the code.

Consideration should be given to testing both the user interface and the API with automated test
cases to check the consistency of the results.

Test Automation Framework (TAF)

A test automation framework (TAF) that is easy to use, well documented and maintainable,
supports a consistent approach to automating tests.

In order to establish an easy to use and maintainable TAF, the following must be done:

 Implement reporting facilities: The test reports should provide information (pass/fail/error/not
run/aborted, statistical, etc.) about the quality of the SUT.  Reporting should provide the
information for the involved testers, test managers, developers, project managers and other
stakeholders to obtain an overview of the quality.

 Enable easy troubleshooting: In addition to the test execution and logging, the TAF has to
provide an easy way to troubleshoot failing tests. The test can fail due to

o failures found in the SUT
o failures found in the TAS
o problem with the tests themselves or the test environment.

 Address the test environment appropriately: Test tools are dependent upon consistency in the
test environment. Having a dedicated test environment is necessary in automated testing. If
there is no control of the test environment and test data, the setup for tests may not meet the
requirements for test execution and it is likely to produce false execution results.

 Document the automated test cases: The goals for test automation have to be clear, e.g., which
parts of application are to be tested, to what degree, and which attributes are to be tested
(functional and non-functional). This must be clearly described and documented.

 Trace the automated test: TAF shall support tracing for the test automation engineer to trace
individual steps to test cases.

 Enable easy maintenance: Ideally, the automated test cases should be easily maintained so
that maintenance will not consume a significant part of the test automation effort. In addition,
the maintenance effort needs to be in proportion to the scale of the changes made to the SUT.
To do this, the cases must be easily analyzable, changeable and expandable. Furthermore,
automated testware reuse should be high to minimize the number of items requiring changes.
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 Keep the automated tests up-to-date: when new or changed requirements cause tests or entire
test suites to fail, do not disable the failed tests – fix them.

 Plan for deployment: Make sure that test scripts can be easily deployed, changed and
redeployed.

 Retire tests as needed: Make sure that automated test scripts can be easily retired if they are
no longer useful or necessary.

 Monitor and restore the SUT: In real practice, to continuously run a test case or set of test
cases, the SUT must be monitored continuously.  If the SUT encounters a fatal error (such as
a crash), the TAF must have the capability to recover, skip the current case, and resume testing
with the next case.

The test automation code can be complex to maintain. It is not unusual to have as much code for testing
as the code for the SUT. This is why it is of utmost importance that the test code be maintainable. This is
due to the different test tools being used, the different types of verification that are used and the different
testware artifacts that have to be maintained (such as test input data, test oracles, test reports).

With these maintenance considerations in mind, in addition to the important items that should be done,
there are a few that should not be done, as follows:
 Do not create code that is sensitive to the interface (i.e., it would be affected by changes in the

graphical interface or in non-essential parts of the API).
 Do not create test automation that is sensitive to data changes or has a high dependency on

particular data values (e.g., test input depending on other test outputs).
 Do not create an automation environment that is sensitive to the context (e.g., operating system

date and time, operating system localization parameters or the contents of another application). In
this case, it is better to use test stubs as necessary so the environment can be controlled.

The more success factors that are met, the more likely the test automation project will succeed. Not all
factors are required, and in practice rarely are all factors met. Before starting the test automation project, it
is important to analyze the chance of success for the project by considering the factors in place and the
factors missing keeping risks of the chosen approach in mind as well as project context. Once the TAA is
in place, it is important to investigate which items are missing or still need work.
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2. Preparing for Test Automation - 165 mins.
Keywords
testability, driver, level of intrusion, stub, test execution tool, test hook, test automation manager

Learning Objectives for Preparing for Test Automation

2.1 SUT Factors Influencing Test Automation
ALTA-E-2.1.1   (K4) Analyze a system under test to determine the appropriate automation solution

2.2 Tool Evaluation and Selection
ALTA-E-2.2.1   (K4) Analyze test automation tools for a given project and report technical findings and

recommendations

2.3 Design for Testability and Automation
ALTA-E-2.3.1   (K2) Understand "design for testability" and "design for test automation" methods

applicable to the SUT
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2.1 SUT Factors Influencing Test Automation

When evaluating the context of the SUT and its environment, factors that influence test automation need
to be identified to determine an appropriate solution. These may include the following:

 SUT interfaces
The automated test cases invoke actions on the SUT. For this, the SUT must provide interfaces
via which the SUT can be controlled. This can be done via UI controls, but also via lower-level
software interfaces. In addition, some test cases may be able to interface at the communication
level (e.g., using TCP/IP, USB, or proprietary messaging interfaces).

The decomposition of the SUT allows the test automation to interface with the SUT on different test
levels. It is possible to automate the tests on a specific level (e.g., component and system level),
but only when the SUT supports this adequately. For example, at the component level, there may
be no user interface that can be used for testing, so different, possibly customized, software
interfaces (also called test hooks) need to be available.

 Third party software
Often the SUT not only consists of software written in the home organization but may also include
software provided by third parties. In some contexts, this third party software may need testing, and
if test automation is justified, it may need a different test automation solution, such as using an API.

 Levels of intrusion
Different test automation approaches (using different tools) have different levels of intrusion. The
greater the number of changes that are required to be made to the SUT specifically for automated
testing, the higher the level of intrusion. Using dedicated software interfaces requires a high level
of intrusion whereas using existing UI elements has a lower level of intrusion. Using hardware
elements of the SUT (such as keyboards, hand-switches, touchscreens, communication interfaces)
have an even higher level of intrusion.

The problem with higher levels of intrusion is the risk for false alarms. The TAS can exhibit failures
that may be due to the level of intrusion imposed by the tests, but these are not likely to happen
when the software system is being used in a real live environment. Testing with a high level of
intrusion is usually a simpler solution for the test automation approach.

 Different SUT architectures
Different SUT architectures may require different test automation solutions. A different approach is
needed for an SUT written in C++ using COM technology than for an SUT written in Python. It may
be possible for these different architectures to be handled by the same test automation strategy,
but that requires a hybrid strategy with the ability to support them.

 Size and complexity of the SUT
Consider the size and complexity of the current SUT and plans for future development. For a small
and simple SUT, a complex and ultra-flexible test automation approach may not be warranted. A
simple approach may be better suited. Conversely, it may not be wise to implement a small and
simple approach for a very large and complex SUT. At times though, it is appropriate to start small
and simple even for a complex SUT but this should be a temporary approach (see Chapter 3 for
more details).
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Several factors described here are known (e.g., size and complexity, available software interfaces) when
the SUT is already available, but most of the time the development of the test automation should start
before the SUT is available. When this happens several things need to be estimated or the TAE can specify
the software interfaces that are needed. (see Section 2.3 for more details).

Even when the SUT does not yet exist, test automation planning can start. For example:
 When the requirements (functional or non-functional) are known, candidates for automation can be

selected from those requirements together with identifying the means to test them. Planning for
automation can begin for those candidates, including identifying the requirements for the
automation and determining the test automation strategy.

 When the architecture and technical design is being developed, the design of software interfaces
to support testing can be undertaken.

2.2 Tool Evaluation and Selection

The primary responsibility for the tool selection and evaluation process belongs with the Test Automation
Manager (TAM). However the TAE will be involved in supplying information to the TAM and conducting
many of the evaluation and selection activities. The concept of the tool evaluation and selection process
was introduced at the Foundation Level and more details of this process are described in the Advanced
Level – Test Manager Syllabus [ISTQB-AL-TM].

The TAE will be involved throughout the tool evaluation and selection process but will have particular
contributions to make to the following activities:
 Assessing organizational maturity and identification of opportunities for test tool support
 Assessing appropriate objectives for test tool support
 Identifying and collecting information on potentially suitable tools
 Analyzing tool information against objectives and project constraints
 Estimating the cost-benefit ratio based on a solid business case
 Making a recommendation on the appropriate tool
 Identifying compatibility of the tool with SUT components

Functional test automation tools frequently cannot meet all the expectations or the situations that are
encountered by an automation project. The following is a set of examples of these types of issues (but it is
definitely not a complete list):
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Finding Examples Possible Solutions
The tool’s interface does
not work with other tools
that are already in place

 The test management tool has
been updated and the connecting
interface has changed

 The information from pre-sales
support was wrong and not all
data can be transferred to the
reporting tool

 Pay attention to the
release notes before any
updates, and for big
migrations test before
migrating to production

 Try to gain an onsite
demonstration of the tool
that uses the real SUT

 Seek support from the
vendor and/or user
community forums

Some SUT dependencies
are changed to ones not
supported by the test tool

 The development department has
updated to the newest version of
Java

 Synchronize upgrades for
development/test
environment and the test
automation tool

Object on GUI could not
be captured

 The object is visible but the test
automation tool cannot interact
with it

 Try to use only well-known
technologies or objects in
development

 Do a pilot project before
buying a test automation
tool

 Have developers define
standards for objects

Tool looks very
complicated

 The tool has a huge feature set
but only part of that will be used

 Try to find a way to limit
the feature set by
removing unwanted
features from the tool bar

 Select a license to meet
your needs.

 Try to find alternative tools
that are more focused on
the required functionality.

Conflict with other
systems

 After installation of other software
the test automation tool will not
work anymore or vice versa

 Read the release notes or
technical requirements
before installing.

 Get confirmation from the
supplier that there will be
no impact to other tools.

 Question user community
forums.

Impact on the SUT  During/after use of the test
automation tool the SUT is
reacting differently (e.g., longer
response time)

 Use a tool that will not
need to change the SUT
(e.g., installation of
libraries, etc.)

Access to code  The test automation tool will
change parts of the source code

 Use a tool that will not
need to change the source
code (e.g., installation of
libraries, etc.)
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Finding Examples Possible Solutions
Limited resources (mainly
in embedded
environments)

 The test environment has limited
free resources or runs out of
resources (e.g., memory)

 Read release notes and
discuss the environment
with the tool provider to get
confirmation that this will
not lead to problems.

 Question user community
forums.

Updates  Update will not migrate all data or
corrupts existing automated test
scripts, data or configurations

 Upgrade needs a different
(better) environment

 Test upgrade on the test
environment and get
confirmation from the
provider that migration will
work

 Read update prerequisites
and decide if the update is
worth the effort

 Seek support from the
user community forums

Security  Test automation tool requires
information that is not available to
the test automation engineer

 Test automation engineer
needs to be granted
access

Incompatibility between
different environments
and platforms

 Test automation does not work
on all environments/platforms

 Implement automated
tests to maximize tool
independence thereby
minimizing the cost of
using multiple tools.

2.3 Design for Testability and Automation

SUT testability (availability of software interfaces that support testing e.g., to enable control and
observability of the SUT) should be designed and implemented in parallel with the design and
implementation of the other features of the SUT. This can be done by the software architect (as testability
is just one of the non-functional requirements of the system), but often this is done by, or with the
involvement of, a TAE.

Design for testability consists of several parts:
 Observability: The SUT needs to provide interfaces that give insight into the system. Test cases

can then use these interfaces to check, for example, whether the expected behavior equals the
actual behavior.

 Control(ability): The SUT needs to provide interfaces that can be used to perform actions on the
SUT. This can be UI elements, function calls, communication elements (e.g., TCP/IP or USB
protocol), electronic signals (for physical switches), etc.

 Clearly defined architecture: The third important part of design for testability is an architecture that
provides clear and understandable interfaces giving control and visibility on all test levels.

The TAE considers ways in which the SUT can be tested, including automated testing, in an effective
(testing the right areas and finding critical bugs) and efficient (without taking too much effort) way. Whenever
specific software interfaces are needed, they must be specified by the TAE and implemented by the
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developer. It is important to define testability and, if needed, additional software interfaces early in the
project, so that development work can be planned and budgeted.

Some examples of software interfaces that support testing include:
 The powerful scripting capabilities of modern spreadsheets.
 Applying stubs or mocks to simulate software and/or hardware (e.g., electronic financial

transactions, software service, dedicated server, electronic board, mechanical part) that is not yet
available or is too expensive to buy, allows testing of the software in the absence of that specific
interface.

 Software interfaces (or stubs and drivers) can be used to test error conditions. Consider a device
with an internal hard disk drive (HDD). The software controlling this HDD (called a driver) should
be tested for failures or wear of the HDD. Doing this by waiting for a HDD to fail is not very efficient
(or reliable). Implementing software interfaces that simulate defective or slow HDDs can verify that
the driver software performs correctly (e.g., provides an error message, retries).

 Alternative software interfaces can be used to test an SUT when no UI is available yet (and this is
often considered to be a better approach anyway). Embedded software in technical systems often
needs to monitor the temperature in the device and trigger a cooling function to start when the
temperature rises above a certain level. This could be tested without the hardware using a software
interface to specify the temperature.

 State transition testing is used to evaluate the state behavior of the SUT. A way to check whether
the SUT is in the correct state is by querying it via a customized software interface designed for
this purpose (although this also includes a risk, see level of intrusion in Section 2.1).

Design for automation should consider that:
 Compatibility with existing test tools should be established early on.
 The issue of test tool compatibility is critical in that it may impact the ability to automate tests of

important functionality (e.g., incompatibility with a grid control prevents all tests using that
control).

 Solutions may require development of program code and calls to APIs

Designing for testability is of the utmost importance for a good test automation approach, and can also
benefit manual test execution.
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3. The Generic Test Automation Architecture - 270 mins.

Keywords
capture/playback, data-driven testing, generic test automation architecture, keyword-driven testing, linear
scripting, model-based testing, process-driven scripting, structured scripting, test adaptation layer, test
automation architecture, test automation framework, test automation solution, test definition layer, test
execution layer, test generation layer

Learning Objectives for The Generic Test Automation Architecture

3.1 Introduction to gTAA
ALTA-E-3.1.1   (K2) Explain the structure of the gTAA

3.2 TAA Design
ALTA-E-3.2.1   (K4) Design the appropriate TAA for a given project
ALTA-E-3.2.2 (K2) Explain the role that layers play within a TAA
ALTA-E-3.2.3 (K2) Understand design considerations for a TAA
ALTA-E-3.2.4   (K4) Analyze factors of implementation, use, and maintenance requirements for a given

TAS

3.3 TAS Development
ALTA-E-3.3.1   (K3) Apply components of the generic TAA (gTAA) to construct a purpose-built TAA
ALTA-E-3.3.2 (K2) Explain the factors to be considered when identifying reusability of components
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3.1 Introduction to gTAA

A test automation engineer (TAE) has the role of designing, developing, implementing, and maintaining test
automation solutions (TASs). As each solution is developed, similar tasks need to be done, similar
questions need to be answered, and similar issues need to be addressed and prioritized. These reoccurring
concepts, steps, and approaches in automating testing become the basis of the generic test automation
architecture, called gTAA in short.

The gTAA presents the layers, components, and interfaces of a gTAA, which are then further redefined into
the concrete TAA for a particular TAS. It allows for a structured and modular approach to building a test
automation solution by:
 Defining the concept space, layers, services, and interfaces of a TAS to enable the realization of

TASs by in-house as well as by externally developed components
 Supporting simplified components for the effective and efficient development of test automation
 Re-using test automation components for different or evolving TASs for software product lines and

families and across software technologies and tools
 Easing the maintenance and evolution of TASs
 Defining the essential features for a user of a TAS

A TAS consists of both the test environment (and its artifacts) and the test suites (a set of test cases
including test data). A test automation framework (TAF) can be used to realize a TAS. It provides support
for the realization of the test environment and provides tools, test harnesses, or supporting libraries.

It is recommended that the TAA of a TAS complies with the following principles that support easy
development, evolution, and maintenance of the TAS:
 Single responsibility: Every TAS component must have a single responsibility, and that

responsibility must be encapsulated entirely in the component. In other words, every component of
a TAS should be in charge of exactly one thing, e.g., generating keywords or data, creating test
scenarios, executing test cases, logging results, generating execution reports.

 Extension (see e.g., open/closed principle by B. Myer): Every TAS component must be open for
extension, but closed for modification. This principle means that it should be possible to modify or
enrich the behavior of the components without breaking the backward compatible functionality.

 Replacement (see e.g., substitution principle by B. Liskov): Every TAS component must be
replaceable without affecting the overall behavior of the TAS. The component can be replaced by
one or more substituting components but the exhibited behavior must be the same.

 Component segregation (see e.g., interfaces segregation principle by R.C. Martin): It is better to
have more specific components than a general, multi-purpose component. This makes substitution
and maintenance easier by eliminating unnecessary dependencies.

 Dependency inversion: The components of a TAS must depend on abstractions rather than on low-
level details. In other words, the components should not depend on specific automated test
scenarios.

Typically, a TAS based on the gTAA will be implemented by a set of tools, their plugins, and/or components.
It is important to note that the gTAA is vendor-neutral: it does not predefine any concrete method,
technology, or tool for the realization of a TAS. The gTAA can be implemented by any software engineering
approach, e.g., structured, object-oriented, service-oriented, model-driven, as well as by any software
technologies and tools.  In fact, a TAS is often implemented using off-the-shelf tools, but will typically need
additional SUT specific additions and/or adaptations.
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Other guidelines and reference models relating to TASs are software engineering standards for the selected
SDLC (Software Development Lifecycle), programming technologies, formatting standards, etc. It is not in
the scope of this syllabus to teach software engineering in general, however, a TAE is expected to have
skills, experience, and expertise in software engineering.

Furthermore, a TAE needs to be aware of industry coding and documentation standards and best practices
to make use of them while developing a TAS.  These practices can increase maintainability, reliability, and
security of the TAS. Such standards are typically domain-specific. Popular standards include:
 MISRA for C or C++
 JSF coding standard for C++
 AUTOSAR rules for MathWorks Matlab/Simulink®

3.1.1 Overview of the gTAA
The gTAA is structured into horizontal layers for the following:
 Test generation
 Test definition
 Test execution
 Test adaptation

The gTAA (see Figure 1: The Generic Test Automation Architecture) encompasses the following:
 The Test Generation Layer that supports the manual or automated design of test cases. It provides

the means for designing test cases.
 The Test Definition Layer that supports the definition and implementation of test suites and/or test

cases. It separates the test definition from the SUT and/or test system technologies and tools. It
contains means to define high-level and low-level tests, which are handled in the test data, test
cases, test procedures, and test library components or combinations thereof.

 The Test Execution Layer that supports the execution of test cases and test logging. It provides a
test execution tool to execute the selected tests automatically and a logging and reporting
component.

 The Test Adaptation Layer which provides the necessary code to adapt the automated tests for the
various components or interfaces of the SUT. It provides different adaptors for connecting to the
SUT via APIs, protocols, services, and others.

 It also has interfaces for project management, configuration management and test management
in relation to test automation. For example, the interface between test management and test
adaptation layer copes with the selection and configuration of the appropriate adaptors in relation
to the chosen test configuration.

The interfaces between the gTAA layers and their components are typically specific and, therefore, not
further elaborated here.

It is important to understand that these layers can be present or absent in any given TAS. For example:
 If the test execution is to be automated, the test execution and the test adaptation layers need to

be utilized. They do not need to be separated and could be realized together, e.g., in unit test
frameworks.

 If the test definition is to be automated, the test definition layer is required.
 If the test generation is to be automated, the test generation layer is required.
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Most often, one would start with the implementation of a TAS from bottom to top, but other approaches
such as the automated test generation for manual tests can be useful as well.  In general it is advised to
implement the TAS in incremental steps (e.g., in sprints) in order to use the TAS as soon as possible and
to prove the added value of the TAS. Also, proofs of concept are recommended as part of test automation
project.

Any test automation project needs to be understood, set up, and managed as a software development
project and requires dedicated project management. The project management for the TAF development
(i.e., test automation support for a whole company, product families or product lines) can be separated from
the project management for the TAS (i.e., test automation for a concrete product).

Figure 1:  The Generic Test Automation Architecture
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3.1.2 Test Generation Layer
The test generation layer consists of tool support for the following:

 Manually designing test cases
 Developing, capturing, or deriving test data
 Automatically generating test cases from models that define the SUT and/or its environment (i.e.,

automated model-based testing)

The components in this layer are used to:
 Edit and navigate test suite structures
 Relate test cases to test objectives or SUT requirements
 Document the test design

For automated test generation the following capabilities may also be included:
 Ability to model the SUT, its environment, and/or the test system
 Ability to define test directives and to configure/parameterize test generation algorithms
 Ability to trace the generated tests back to the model (elements)

3.1.3 Test Definition Layer
The test definition layer consists of tool support for the following:
 Specifying test cases (at a high and/or low level)
 Defining test data for low-level test cases
 Specifying test procedures for a test case or a set of test cases
 Defining test scripts for the execution of the test cases
 Providing access to test libraries as needed (for example in keyword-driven approaches)

The components in this layer are used to:
 Partition/constrain, parameterize or instantiate test data
 Specify test sequences or fully-fledged test behaviors (including control statements and

expressions), to parameterize and/or to group them
 Document the test data, test cases and/or test procedures

3.1.4 Test Execution Layer
The test execution layer consists of tool support for the following:
 Executing test cases automatically
 Logging the test case executions
 Reporting the test results

The test execution layer may consist of components that provide the following capabilities:
 Set up and tear down the SUT for test execution
 Set up and tear down test suites (i.e., set of test cases including test data)
 Configure and parameterize the test setup
 Interpret both test data and test cases and transform them into executable scripts
 Instrument the test system and/or the SUT for (filtered) logging of test execution and/or for fault

injection
 Analyze the SUT responses during test execution to steer subsequent test runs
 Validate the SUT responses (comparison of expected and actual results) for automated test case

execution results
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 Control the automated test execution in time

3.1.5 Test Adaptation Layer
The test adaptation layer consists of tool support for the following:
 Controlling the test harness
 Interacting with the SUT
 Monitoring the SUT
 Simulating or emulating the SUT environment

The test adaptation layer provides the following functionality:
 Mediating between the technology-neutral test definitions and the specific technology requirements

of the SUT and the test devices
 Applying different technology-specific adaptors to interact with the SUT
 Distributing the test execution across multiple test devices/test interfaces or executing tests locally

3.1.6 Configuration Management of a TAS
Normally, a TAS is being developed in various iterations/versions and needs to be compatible with the
iterations/versions of the SUT. The configuration management of a TAS may need to include:

 Test models
 Test definitions/specifications including test data, test cases and libraries
 Test scripts
 Test execution engines and supplementary tools and components
 Test adaptors for the SUT
 Simulators and emulators for the SUT environment
 Test results and test reports

These items constitute the testware and must be at the correct version to match the version of the SUT.  In
some situations it might be necessary to revert to previous versions of the TAS, e.g., in case field issues
need to be reproduced with older SUT versions. Good configuration management enables this capability.

3.1.7 Project Management of a TAS
As any test automation project is a software project, it requires the same project management as any other
software project. A TAE needs to perform the tasks for all phases of the established SDLC methodology
when developing the TAS. Also, a TAE needs to understand that the development environment of the TAS
should be designed such that status information (metrics) can be extracted easily or automatically reported
to the project management of the TAS.

3.1.8 TAS Support for Test Management
A TAS must support the test management for the SUT. Test reports including test logs and test results
need to be extracted easily or automatically provided to the test management (people or system) of the
SUT.
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3.2 TAA Design

3.2.1 Introduction to TAA Design
There are a number of principal activities required to design a TAA, which can be ordered according to the
needs of the test automation project or organization.  These activities are discussed in the sections below.
More or fewer activities may be required depending on the complexity of the TAA.

Capture requirements needed to define an appropriate TAA
The requirements for a test automation approach need to consider the following:

 Which activity or phase of the test process should be automated, e.g., test management, test
design, test generation, or test execution. Note that test automation refines the fundamental test
process by inserting test generation between test design and test implementation.

 Which test level should be supported, e.g., component level, integration level, system level
 Which type of test should be supported, e.g., functional testing, conformance testing,

interoperability testing
 Which test role should be supported, e.g., test executor, test analyst, test architect, test manager
 Which software product, software product line, software product family should be supported, e.g.,

to define the span and lifetime of the implemented TAS
 Which SUT technologies should be supported, e.g., to define the TAS in view of compatibility to

the SUT technologies

Compare and contrast different design/architecture approaches
The TAE needs to analyze the pros and cons of different approaches when designing selected layers of
the TAA. These include but are not limited to:

Considerations for the test generation layer:
 Selection of manual or automated test generation
 Selection of for example requirements-based, data-based, scenario-based or behavior-

based test generation
 Selection of test generation strategies (e.g., model coverage such as classification trees for

data-based approaches, use case/exception case coverage for scenario-based approaches,
transition/state/path coverage for behavior-based approaches, etc.)

 Choosing of the test selection strategy. In practice, full combinatorial test generation is
infeasible as it may lead to test case explosion. Therefore, practical coverage criteria,
weights, risk assessments, etc. should be used to guide the test generation and subsequent
test selection.

Considerations for the test definition layer:
 Selection of data-driven, keyword-driven, pattern-based or model-driven test definition
 Selection of notation for test definition (e.g., tables, state-based notation, stochastic notation,

dataflow notation, business process notation, scenario-based notation, etc. by use of
spreadsheets, domain-specific test languages, the Testing and Test Control Notation (TTCN-
3), the UML Testing Profile (UTP), etc.)

 Selection of style guides and guidelines for the definition of high quality tests
 Selection of test case repositories (spreadsheets, databases, files, etc.)

Considerations for the test execution layer:
 Selection of the test execution tool
 Selection of interpretation (by use of a virtual machine) or compilation approach for

implementing test procedures – this choice typically depends on the chosen test execution
tool
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 Selection of the implementation technology for implementing test procedures (imperative,
such as C; functional, such as Haskell or Erlang; object-oriented, such as C++, C#, Java;
scripting, such as Python or Ruby, or a tool-specific technology) – this choice is typically
dependent on the chosen test execution tool

 Selection of helper libraries to ease test execution (e.g., test device libraries,
encoding/decoding libraries, etc.)

Considerations for the test adaptation layer:
 Selection of test interfaces to the SUT
 Selection of tools to stimulate and observe the test interfaces
 Selection of tools to monitor the SUT during test execution
 Selection of tools to trace test execution (e.g., including the timing of the test execution)

Identify areas where abstraction can deliver benefits
Abstraction in a TAA enables technology independence in that the same test suite can be used in different
test environments and on different target technologies. The portability of test artifacts is increased. In
addition, vendor-neutrality is assured which avoids lock-in effects for a TAS. Abstraction also improves
maintainability and adaptability to new or evolving SUT technologies. Furthermore, abstraction helps to
make a TAA (and its instantiations by TASs) more accessible to non-technicians as test suites can be
documented (including graphical means) and explained at a higher level, which improves readability and
understandability.

The TAE needs to discuss with the stakeholders in software development, quality assurance, and testing
which level of abstraction to use in which area of the TAS. For example, which interfaces of the test
adaptation and/or test execution layer need to be externalized, formally defined, and kept stable throughout
the TAA lifetime? It also needs to be discussed if an abstract test definition is being used or if the TAA uses
a test execution layer with test scripts only. Likewise, it needs to be understood if test generation is
abstracted by use of test models and model-based testing approaches. The TAE needs to be aware that
there are trade-offs between sophisticated and straightforward implementations of a TAA with respect to
overall functionality, maintainability, and expandability. A decision on which abstraction to use in a TAA
needs to take into account these trade-offs.

The more abstraction is used for a TAA, the more flexible it is with respect to further evolution or transitioning
to new approaches or technologies. This comes at the cost of larger initial investments (e.g., more complex
test automation architecture and tools, higher skill set requirements, bigger learning curves), which delays
the initial breakeven but can pay off in the long run. It may also lead to lower performance of the TAS.

While the detailed ROI (Return on Investment) considerations are the responsibility of the TAM, the TAE
needs to provide inputs to the ROI analysis by providing technical evaluations and comparisons of different
test automation architectures and approaches with respect to timing, costs, efforts, and benefits.

Understand SUT technologies and how these interconnect with the TAS
The access to the test interfaces of the SUT is central to any automated test execution. The access can be
available at the following levels:

 Software level, e.g., SUT and test software are linked together
 API level, e.g., the TAS invokes the functions/operations/methods provided at a (remote)

application programming interface
 Protocol level, e.g., the TAS interacts with the SUT via HTTP, TCP, etc.
 Service level, e.g., the TAS interacts with the SUT services via web services, RESTful services,

etc.
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In addition, the TAE needs to decide about the paradigm of interaction of the TAA to be used for the
interaction between the TAS and SUT, whenever the TAS and SUT are separated by APIs, protocols or
services.  These paradigms include the following:

 Event-driven paradigm, which drives the interaction via events being exchanged on an event bus
 Client-server paradigm, which drives the interaction via service invocation from service requestors

to service provider
 Peer-to-peer paradigm, which drives the interaction via service invocation from either peer

Often the paradigm choice depends on the SUT architecture and may have implications on the SUT
architecture. The interconnection between the SUT and the TAA needs to be carefully analyzed and
designed in order to select a future-safe architecture between the two systems.

Understand the SUT environment
An SUT can be standalone software or software that works only in relation to other software (e.g., systems
of systems), hardware (e.g., embedded systems), or environmental components (e.g., cyber-physical
systems). A TAS simulates or emulates the SUT environment as part of an automated test setup.

Examples of test environments and sample uses include the following:
 A computer with both the SUT and the TAS – useful for testing a software application
 Individual networked computers for an SUT and TAS respectively – useful for testing server

software
 Additional test devices to stimulate and observe the technical interfaces of an SUT – useful for

testing the software for example on a set-top box
 Networked test devices to emulate the operational environment of the SUT – useful for testing the

software of a network router
 Simulators to simulate the physical environment of the SUT – useful for testing the software of an

embedded control unit

Time and complexity for a given testware architecture implementation
While the effort estimation for a TAS project is the responsibility of a TAM, a TAE needs to support a TAM
in this by providing good estimates for the time and complexity of a TAA design. Methods for estimations
and examples include the following:

 Analogy-based estimation such as such as functions points, three-point estimation, wideband
delphi, and expert estimation

 Estimation by use of work breakdown structures such as those found in management software or
project templates

 Parametric estimation such as Constructive Cost Model (COCOMO)
 Size-based estimations such as Function Point Analysis, Story Point Analysis, or Use Case

Analysis
 Group estimations such as Planning Poker

Ease of use for a given testware architecture implementation
In addition to the functionality of the TAS, its compatibility with the SUT, its long-term stability and
evolvability, its effort requirements, and ROI considerations, a TAE has the specific responsibility to address
usability issues for a TAS. This includes, but is not limited to:

 Tester-oriented design
 Ease of use of the TAS
 TAS support for other roles in the software development, quality assurance, and project

management
 Effective organization, navigation,  and search in/with the TAS
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 Useful documentation, manuals, and help text for the TAS
 Practical reporting by and about the TAS
 Iterative designs to address TAS feedback and empirical insights

3.2.2 Approaches for Automating Test Cases

Test cases need to be translated into sequences of actions which are executed against an SUT. That
sequence of actions can be documented in a test procedure and/or can be implemented in a test script.
Besides actions, the automated test cases should also define test data for the interaction with the SUT and
include verification steps to verify that the expected result was achieved by the SUT. A number of
approaches can be used to create the sequence of actions:

1. The TAE implements test cases directly into automated test scripts. This option is the least
recommended as it lacks abstraction and increases the maintenance load.

2. The TAE designs test procedures, and transforms them into automated test scripts. This option
has abstraction but lacks automation to generate the test scripts.

3. The TAE uses a tool to translate test procedures into automated test scripts. This option combines
both abstraction and automated script generation.

4. The TAE uses a tool that generates automated test procedures and/or translates the test scripts
directly from models. This option has the highest degree of automation.

Note that the options are heavily dependent on the context of the project. It may also be efficient to start
test automation by applying one of the less advanced options, as these are typically easier to implement.
This can provide added value at short term although it will result in a less maintainable solution.

Well-established approaches for automating test cases include:
 Capture/playback approach, which can be used for option 1
 Structured scripting approach, data-driven approach, and keyword-driven approach, which can be

used for option 2 or 3
 Model-based testing (including the process-driven approach), which can be used for option 4

These approaches are explained subsequently in terms of principal concepts and pros and cons.

Capture/playback approach

Principal concept
In capture/playback approaches, tools are used to capture interactions with the SUT while
performing the sequence of actions as defined by a test procedure. Inputs are captured; outputs
may also be recorded for later checks. During the replay of events, there are various manual and
automated output checking possibilities:
 Manual:  the tester has to watch the SUT outputs for anomalies
 Complete:  all system outputs that were recorded during capture must be reproduced by the

SUT
 Exact: all system outputs that were recorded during capture must be reproduced by the SUT

to the level of detail of the recording
 Checkpoints: only selected system outputs are checked at certain points for specified values

Pros
The capture/playback approach can be used for SUTs on the GUI and/or API level. Initially, it is
easy to setup and use.
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Cons
Capture/playback scripts are hard to maintain and evolve because the captured SUT execution
depends strongly on the SUT version from which the capture has been taken. For example, when
recording at the GUI level, changes in the GUI layout may impact the test script, even if it is only a
change in the positioning of a GUI element. Therefore, capture/replay approaches remain
vulnerable to changes.

Implementation of the test cases (scripts) can only start when the SUT is available.

Linear scripting

Principal concept
As with all scripting techniques, linear scripting starts with some manual test procedures. Note
though that these may not be written documents – the knowledge about what tests to run and how
to run them may be ‘known’ by one or more Test Analysts.

Each test is run manually while the test tool records the sequence of actions and in some cases
captures the visible output from the SUT to the screen. This generally results in one (typically large)
script for each test procedure. Recorded scripts may be edited to improve readability (e.g., by
adding comments to explain what is happening at key points) or add further checks using the
scripting language of the tool.

The scripts can then be replayed by the tool, causing the tool to repeat the same actions taken by
the tester when the script was recorded. Although this can be used to automate GUI tests, it is not
a good technique to use where large numbers of tests are to be automated and they are required
for many releases of the software. This is because of the high maintenance cost that is typically
caused by changes to the SUT (each change in the SUT may necessitate many changes to the
recorded scripts).

Pros
The advantages of linear scripts focus on the fact that there is little or no preparation work required
before you can start automating. Once you have learned to use the tool it is simply a matter of
recording a manual test and replaying it (although the recording part of this may require additional
interaction with the test tool to request that comparisons of actual with expected output occurs to
verify the software is working correctly). Programming skills are not required but are usually helpful.

Cons
The disadvantages of linear scripts are numerous. The amount of effort required to automate any
given test procedure will be mostly dependent on the size (number of steps or actions) required to
perform it. Thus, the 1000th test procedure to be automated will take a similarly proportional amount
of effort as the 100th test procedure. In other words, there is not much scope for decreasing the
cost of building new automated tests.

Furthermore, if there were a second script that performed a similar test albeit with different input
values, that script would contain the same sequence of instructions as the first script; only the
information included with the instructions (known as the instruction arguments or parameters)
would differ. If there were several tests (and hence scripts) these would all contain the same
sequence of instructions, all of which would need to be maintained whenever the software changed
in a way that affected the scripts.
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Because the scripts are in a programming language, rather than a natural language, non-
programmers may find them difficult to understand. Some test tools use proprietary languages
(unique to the tool) so it takes time to learn the language and become proficient with it.

Recorded scripts contain only general statements in the comments, if any at all. Long scripts in
particular are best annotated with comments to explain what is going on at each step of the test.
This makes maintenance easier. Scripts can soon become very large (containing many
instructions) when the test comprises many steps.

The scripts are non-modular and difficult to maintain. Linear scripting does not follow common
software reusability and modularity paradigms and is tightly coupled with the tool being used.

Structured scripting

Principal concept
The major difference between the structured scripting technique and the linear scripting technique
is the introduction of a script library. This contains reusable scripts that perform sequences of
instructions that are commonly required across a number of tests. Good examples of such scripts
are those that interface, e.g., to the operations of SUT interfaces.

Pros
Benefits of this approach include a significant reduction in the maintenance changes required and
the reduced cost of automating new tests (because they can use scripts that already exist rather
than having to create them all from scratch).

The advantages of structured scripting are largely attained through the reuse of scripts. More tests
can be automated without having to create the volume of scripts that a linear scripting approach
would require. This has a direct impact on the build and maintenance costs. The second and
subsequent tests will not take as much effort to automate because some of the scripts created to
implement the first test can be reused again.

Cons
The initial effort to create the shared scripts can be seen as a disadvantage but this initial
investment should pay big dividends if approached properly. Programming skills will be required to
create all the scripts as simple recording alone will not be sufficient. The script library must be well
managed, i.e., the scripts should be documented and it should be easy for Technical Test Analysts
to find the required scripts (so a sensible naming convention will help here).
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Data-driven testing

Principal concept
The data-driven scripting technique builds on the structured scripting technique. The most
significant difference is how the test inputs are handled. The inputs are extracted from the scripts
and put into one or more separate files (typically called data files).

This means the main test script can be reused to implement a number of tests (rather than just a
single test). Typically the ‘reusable’ main test script is called a ‘control’ script. The control script
contains the sequence of instructions necessary to perform the tests but reads the input data from
a data file. One control test may be used for many tests but it is usually insufficient to automate a
wide range of tests. Thus, a number of control scripts will be required but that is only a fraction of
the number of tests that are automated.

Pros
The cost of adding new automated tests can be significantly reduced by this scripting technique.
This technique is used to automate many variations of a useful test, giving deeper testing in a
specific area and may increase test coverage.

Having the tests ‘described’ by the data files means that Test Analysts can specify ‘automated’
tests simply by populating one or more data files. This gives Test Analysts more freedom to specify
automated tests without as much dependency on the Technical Test Analysts (who may be a
scarce resource).

Cons
The need to manage data files and make sure they are readable by TAS is a disadvantage but can
be approached properly.

Also, important negative test cases may be missed. Negative tests are a combination of test
procedures and test data. In an approach targeting test data mainly, "negative test procedures"
may be missed.

Keyword-driven testing

Principal concept
The keyword-driven scripting technique builds on the data-driven scripting technique. There are
two main differences: (1) the data files are now called ‘test definition’ files or something similar (e.g.,
action word files); and (2) there is only one control script.

A test definition file contains a description of the tests in a way that should be easier for Test
Analysts to understand (easier than the equivalent data file). It will usually contain data as does the
data files but keyword files also contain high level instructions (the keywords, or ‘action words’).

The keywords should be chosen to be meaningful to the Test Analyst, the tests being described
and the application being tested. These are mostly (but not exclusively) used to represent high-
level business interactions with a system (e.g., “place order”). Each keyword represents a number
of detailed interactions with the system under test. Sequences of keywords (including the relevant
test data) are used to specify the test cases. Special keywords can be used for verification steps,
or keywords can contain both the actions and the verification steps.



Certified Tester
Advanced Level Syllabus – Test Automation Engineer

International
Software Testing

Qualifications Board

Version 2016 Page 35 of 84 21 Oct 2016
© International Software Testing Qualifications Board

The scope of responsibility for Test Analysts includes creating and maintaining the keyword files.
This means that once the supporting scripts are implemented, Test Analysts can add ‘automated’
tests simply by specifying them in a keyword file (as with data-driven scripting).

Pros
Once the controlling script and supporting scripts for the keywords have been written, the cost of
adding new automated tests will be much reduced by this scripting technique.

Having the tests ‘described’ by the keyword files means that Test Analysts can specify ‘automated’
tests simply by describing the tests using the keywords and associated data. This gives Test
Analysts more freedom to specify automated tests without as much dependency on the Technical
Test Analysts (who may be a scarce resource). The benefit of the keyword-driven approach over
the data-driven approach in this regard is the use of the keywords. Each keyword should represent
a sequence of detailed actions that produce some meaningful result. For example, ‘create account’,
‘place order’, ‘check order status’ are all possible actions for an online shopping application that
each involve a number of detailed steps. When one Test Analyst describes a system test to another
Test Analyst, they are likely to speak in terms of these high level actions, not the detailed steps.
The aim of the keyword-driven approach then is to implement these high level actions and allow
tests to be defined in terms of the high level actions without reference to the detailed steps.

These test cases are easier to maintain, read and write as the complexity can be hidden in the
keywords (or in the libraries, in case of a structured scripting approach). The keywords can offer
an abstraction from the complexities of the interfaces of the SUT.

Cons
Implementing the keywords remains a big task for test automation engineers, particularly if using a
tool that offers no support for this scripting technique. For small systems it may be too much
overhead to implement and the costs would outweigh the benefits.

Care needs to be taken to ensure that the correct keywords are implemented. Good keywords will
be used often with many different tests whereas poor keywords are likely to be used just once or
only a few times.

Process-driven scripting

Principal concept
The process-driven approach builds on the keyword-driven scripting technique with the difference
that scenarios – representing uses cases of the SUT and variants thereof – constitute the scripts
which are parameterized with test data or combined into higher-level test definitions.

Such test definitions are easier to cope with as the logical relation between actions, e.g., ‘check
order status’ after ‘place order’ in feature testing or ‘check order status’ without previous ‘place
order’ in robustness testing, can be determined.

Pros
The use of process-like, scenario-based definition of test cases allows the test procedures to be
defined from a workflow perspective. The aim of the process-driven approach is to implement these
high-level workflows by using test libraries that represent the detailed test steps (see also keyword-
driven approach).
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Cons
Processes of an SUT may not be easy to comprehend by a Technical Test Analyst – and so is the
implementation of the process-oriented scripts, particularly if no business process logic is
supported by the tool.

Care needs also to be taken to ensure that the correct processes, by use of correct keywords, are
implemented. Good processes will be referenced by other processes and result in many relevant
tests whereas poor processes will not pay off in terms of relevance, error-detection capability, etc.

Model-based testing

Principal concept
Model-based testing refers to the automated generation of test cases (see also the Model-Based
Tester Syllabus by ISTQB) – as opposed to the automated execution of test cases – by use of
capture/playback, linear scripting, structured scripting, data-driven scripting or process-driven
scripting. Model-based testing uses (semi-)
formal models which abstract from the scripting technologies of the TAA. Different test generation
methods can be used to derive tests for any of the scripting frameworks discussed before.

Pros
Model-based testing allows by abstraction to concentrate on the essence of testing (in terms of
business logic, data, scenarios, configurations, etc. to be tested). It also allows generating tests for
different target systems and targeted technologies, so that the models used for test generation
constitute a future-safe representation of testware which can be reused and maintained as the
technology evolves.

In case of changes in the requirements, the test model has to be adapted only; a complete set of
test cases is generated automatically. Test case design techniques are incorporated in the test
case generators.

Cons
Modeling expertise is required to run a model-based testing approach effectively. The task of
modeling by abstracting an SUT’s interfaces, data and/or behavior can be difficult. In addition,
modeling and model-based testing tools are not yet main stream, but are maturing. Model-based
testing approaches require adjustments in the test processes.  For example, the role of test
designer needs to be established. In addition, the models used for test generation constitute major
artifacts for quality assurance of an SUT and need to be quality assured and maintained as well.

3.2.3 Technical considerations of the SUT
In addition, technical aspects of an SUT should be considered when designing a TAA. Some of these are
discussed below although this is not a complete list but should serve as a sample of the important aspects.



Certified Tester
Advanced Level Syllabus – Test Automation Engineer

International
Software Testing

Qualifications Board

Version 2016 Page 37 of 84 21 Oct 2016
© International Software Testing Qualifications Board

Interfaces of the SUT
An SUT has internal interfaces (inside the system) and external interfaces (to the system environment and
its users or by exposed components). A TAA needs to be able to control and/or observe all those interfaces
of the SUT which are potentially affected by the test procedures (i.e., interfaces need to be testable). In
addition, there may also be the need to log the interactions between the SUT and the TAS with different
levels of detail, typically including time stamps.

Test focus (e.g., a test) is needed at the beginning of the project (or continuously in agile environments)
during architecture definition to verify the availability of the necessary test interfaces or test facilities
required for the SUT to be testable (design for testability).

SUT data
An SUT uses configuration data to control its instantiation, configuration, administration, etc. Furthermore,
it uses user data which it processes. An SUT also may use external data from other systems to complete
its tasks. Depending on the test procedures for an SUT, all these types of data need to be definable,
configurable and capable of instantiation by the TAA. The specific way of coping with the SUT data is
decided in the TAA design. Depending on the approach, data may be handled as parameters, test data
sheets, test databases, real data, etc.

SUT configurations
An SUT may be deployed in different configurations, for example on different operating systems, on
different target devices, or with different language settings. Depending on the test procedures, different
SUT configurations may have to be addressed by the TAA. The test procedures may require different test
setups (in a lab) or virtual test setups (in the cloud) of the TAA in combination with a given SUT
configuration. It may also require adding simulators and/or emulators of selected SUT components for
selected SUT aspects.

SUT standards and legal settings
In addition to the technical aspects of an SUT, the TAA design may need to respect legal and/or standards
requirements so as to design the TAA in a compatible manner. Examples include privacy requirements for
the test data or confidentiality requirements that impact the logging and reporting capabilities of the TAA.

Tools and tool environments used to develop the SUT
Along with the development of an SUT, different tools may be used for the requirements engineering, design
and modeling, coding, integration and deployment of the SUT. The TAA together with its own tools should
take the SUT tool landscape into account in order to enable tool compatibility, traceability and/or reuse of
artifacts.

Test interfaces in the software product
It is strongly recommended not to remove all the test interfaces prior to the product release.  In most cases,
these interfaces can be left in the SUT without causing issues with the final product.  When left in place,
the interfaces can be used by service and support engineers for problem diagnosis as well as for testing
maintenance releases.  It is important to verify that the interfaces will pose no security risks.  If necessary,
developers usually can disable these test interfaces such that they cannot be used outside the development
department.

3.2.4 Considerations for Development/QA Processes
The aspects of the development and quality assurance processes of an SUT should be considered when
designing a TAA.  Some of these are discussed below although this is not a complete list but should serve
as a sample of the important aspects.
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Test execution control requirements
Depending on the level of automation required by the TAA, interactive test execution, batch mode test
execution or fully automated test execution may need to be supported by the TAA.

Reporting requirements
Depending on the reporting requirements including types of reports and their structures, the TAA needs to
be able to support fixed, parameterized or defined test reports in different formats and layouts.

Role and access rights
Depending on the security requirements, the TAA may be required to provide a role and access rights
system.

Established tool landscape
SUT project management, test management, code and test repository, defect tracking, incident
management, risk analysis, etc., may all be supported by tools composing the established tool landscape.
The TAA is also supported by a tool or tool set which needs to seamlessly integrate with the other tools in
the landscape. Also, test scripts should be stored and versioned like SUT code so that revisions follow the
same process for both.

3.3 TAS Development

3.3.1 Introduction to TAS Development
Development of a TAS is comparable to other software development projects. It can follow the same
procedures and processes including peer reviews by developers and testers. Specific to a TAS are its
compatibility and synchronization with the SUT. These require consideration in the TAA design (see Section
3.2) and in the TAS development. Also, the SUT is impacted by the test strategy, e.g., having to make test
interfaces available to the TAS.

This section uses the software development lifecycle (SDLC) for explaining the TAS development process
and the process-related aspects of compatibility and synchronization to the SUT. These aspects are
likewise important for any other development process that has been chosen or is in place for the SUT and/or
TAS development – they need to be adapted accordingly.

The basic SDLC for TAS is shown in Figure 2.



Certified Tester
Advanced Level Syllabus – Test Automation Engineer

International
Software Testing

Qualifications Board

Version 2016 Page 39 of 84 21 Oct 2016
© International Software Testing Qualifications Board

Figure 2:  Basic SDLC for TAS

The set of requirements for a TAS needs to be analyzed and collected (see Figure 2). The requirements
guide the design of the TAS as defined by its TAA (see Section 3.2). The design is turned into software by
software engineering approaches. Please note that a TAS may also use dedicated test device hardware,
which is outside of consideration for this syllabus. Like any other software, a TAS needs to be tested. This
is typically done by basic capability tests for the TAS which are followed by an interplay between the TAS
and SUT. After deployment and use of a TAS, often a TAS evolution is needed to add more test capability,
change tests or to update the TAS to match the changing SUT. The TAS evolution requires a new round of
TAS development according to the SDLC.

Please also note that the SDLC does not show the backup, archiving and teardown of a TAS. As with the
TAS development, these procedures should follow established methods in an organization.

3.3.2 Compatibility between the TAS and the SUT
Process compatibility
Testing of an SUT should be synchronized with its development – and, in the case of test automation,
synchronized with the TAS development. Therefore, it is advantageous to coordinate the processes for
SUT development, TAS development and for testing. A large gain can be achieved when the SUT and TAS
development are compatible in terms of process structure, process management and tool support.

Team compatibility
Team compatibility is another aspect of compatibility between TAS and SUT development. If a compatible
mindset is used to approach and manage the TAS and the SUT development, both teams will benefit by
reviewing each other’s requirements, designs and/or development artifacts, by discussing issues, and by
finding compatible solutions. Team compatibility also helps in the communication and interaction with each
other.

Technology compatibility
Furthermore, technology compatibility between the TAS and SUT should be considered. It is beneficial to
design and implement a seamless interplay between the TAS and the SUT right from the beginning. Even
if that is not possible (e.g., because technical solutions are not available for either the TAS or SUT), a
seamless interplay by use of adapters, wrappers or other forms of intermediaries may be possible.
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Tool compatibility
Tool compatibility between TAS and SUT management, development, and quality assurance needs to be
considered. For example, if the same tools for requirements management and/or issues management are
used, the exchange of information and the coordination of TAS and SUT development will be easier.

3.3.3 Synchronization between TAS and SUT
Synchronization of requirements
After requirements elicitation, both SUT and TAS requirements are to be developed. TAS requirements can
be grouped into two main groups of requirements: (1) requirements that address the development of the
TAS as a software-based system, such as requirements for the TAS features for test design, test
specification, test result analysis, etc. and (2) requirements that address the testing of the SUT by means
of the TAS. These so called testing requirements correspond to the SUT requirements and reflect all those
SUT features and properties which are to be tested by the TAS. Whenever the SUT or the TAS
requirements are updated, it is important to verify the consistency between the two and to check that all
SUT requirements that are to be tested by the TAS have defined test requirements.

Synchronization of development phases
In order to have the TAS ready when needed for testing the SUT, the development phases need to be
coordinated. It is most efficient when the SUT and TAS requirements, designs, specifications, and
implementations are synchronized.

Synchronization of defect tracking
Defects can relate to the SUT, to the TAS or to the requirements/designs/specifications. Because of the
relationship between the two projects, whenever a defect is corrected within one, the corrective action may
impact the other. Defect tracking and confirmation testing have to address both the TAS and the SUT.

Synchronization of SUT and TAS evolution
Both the SUT and the TAS can evolve to accommodate new features or disable features, to correct defects,
or to address changes in their environment (including changes to the SUT and TAS respectively as one is
an environment component for the other). Any change applied to an SUT or to a TAS may impact the other
so the management of these changes should address both the SUT and TAS.

Two synchronization approaches between the SUT and TAS development processes are depicted in Figure
3 and Figure 4.

Figure 3 shows an approach where the two SDLC processes for the SUT and the TAS are mainly
synchronized in two phases: (1) the TAS analysis is based on the SUT design, which itself is based on the
SUT analysis and (2) the testing of the SUT makes use of the deployed TAS.
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Figure 3: Synchronization example 1 of TAS and SUT development processes

Figure 4 shows a hybrid approach with both manual and automated testing. Whenever manual tests are
used before the tests are automated or whenever manual and automated tests are used together, the TAS
analysis should be based both on the SUT design and the manual tests.  In this way, the TAS is
synchronized with both. The second major synchronization point for such an approach is as before: the
SUT testing requires deployed tests, which in the case of manual tests could just be the manual test
procedures to be followed.
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Figure 4:  Synchronization example 2 of TAS and SUT development processes

3.3.4 Building Reuse into the TAS
Reuse of a TAS refers to the reuse of TAS artifacts (from any level of its architecture) across product lines,
product frameworks, product domains and/or project families. Requirements for reuse result from the
relevance of TAS artifacts for the other product variants, products and/or projects. Reusable TAS artifacts
can include:

 (Parts of) test models of test goals, test scenarios, test components or test data
 (Parts of) test cases, test data, test procedures or test libraries themselves
 The test engine and/or test report framework
 The adaptors to the SUT components and/or interfaces

While reuse aspects are already settled when the TAA is defined, the TAS can help increase the ability for
reuse by:
 Following the TAA or revising and updating it whenever needed
 Documenting the TAS artifacts so that they are easily understood and can be incorporated into new

contexts
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 Ensuring the correctness of any TAS artifact so that the usage in new contexts is supported by its
high quality

It is important to note that while design for reuse is mainly a matter for the TAA, the maintenance and
improvements for reuse are a concern throughout the TAS lifecycle. It requires continuous consideration
and effort to make reuse happen, to measure and demonstrate the added value of reuse, and to evangelize
others to reuse existing TASs.

3.3.5 Support for a Variety of Target Systems
TAS support for a variety of target systems refers to the ability of a TAS to test different configurations of a
software product. Different configurations refer to any of the following:
 Number and interconnection of SUT components
 Environments (both software and hardware) on which the SUT components run
 Technologies, programming languages or operating systems used to implement the SUT

components
 Libraries and packages the SUT components are using
 Tools used to implement the SUT components

While the first four aspects impact the TAS on any test level, the last one applies mainly to component-level
and integration-level testing.

The ability of a TAS to test different software product configurations is determined when the TAA is defined.
However, the TAS has to implement the ability to handle the technical variance and has to enable the
management of the TAS features and components needed for different configurations of a software product.

The handling of the TAS variety in relation to the variety of the software product can be dealt with differently:
 Version/configuration management for the TAS and SUT can be used to provide the respective

versions and configurations of the TAS and SUT that fit to each other
 TAS parameterization can be used to adjust a TAS to an SUT configuration

It is important to note that while design for TAS variability is mainly a matter for the TAA, the maintenance
of and improvements for variability are a concern throughout the TAS life cycle. It requires continuous
consideration and efforts to revise, add and even remove options and forms of variability.
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4 Deployment Risks and Contingencies - 150 mins.
Keywords
risk, risk mitigation, risk assessment, product risk

Learning Objectives for Deployment Risks and Contingencies

4.1 Selection of Test Automation Approach and Planning of Deployment/Rollout
ALTA-E-4.1.1 (K3) Apply guidelines that support effective test tool pilot and deployment activities

4.2 Risk Assessment and Mitigation Strategies
ALTA-E-4.2.1 (K4) Analyze deployment risks and identify technical issues that could lead to failure of

the test automation project, and plan mitigation strategies

4.3 Test Automation Maintenance
ALTA-E-4.3.1 (K2) Understand which factors support and affect TAS maintainability
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4.1 Selection of Test Automation Approach and Planning of
Deployment/Rollout

There are two main activities involved in the implementation and rollout of a TAS: pilot and deployment.
The steps that comprise these two activities will vary depending on the type of TAS and the specific
situation.

For the pilot, at least the following steps should be considered:
 Identify a suitable project
 Plan the pilot
 Conduct the pilot
 Evaluate the pilot

For deployment, at least the following steps should be considered:
 Identify initial target project(s)
 Deploy the TAS in the selected projects
 Monitor and evaluate the TAS in projects after a pre-defined period
 Rollout to the rest of the organization/projects

4.1.1 Pilot Project
Tool implementation typically starts with a pilot project. The aim of the pilot project is to ensure that the TAS
can be used to achieve the planned benefits. Objectives of the pilot project include:
 Learn more detail about the TAS.
 See how the TAS fits with existing processes, procedures and tools; identify how they might need

to change. (It is usually preferred to modify the TAS so it fits the existing processes/procedures. If
these need to be adjusted to “support the TAS”, this should at least be an improvement to the
processes themselves).

 Design the automation interface to match the needs of the testers.
 Decide on standard ways of using, managing, storing and maintaining the TAS and the test assets

including integration with configuration management and change management (e.g., deciding on
naming conventions for files and tests, creating libraries and defining the modularity of test suites).

 Identify metrics and measurement methods to monitor test automation in use, including usability,
maintainability and expandability.

 Assess whether the benefits can be achieved at reasonable cost. This will be an opportunity to
reset expectations once the TASs have been used.

 Determine what skills are required and which of those are available and which are missing.

Identify a suitable project
The pilot project should be selected carefully using the following guidelines:

 Do not select a critical project. When the deployment of the TAS causes delay, this should not have
major impact on critical projects. The deployment of the TAS will cost time at the beginning. The
project team should be aware of this.

 Do not select a trivial project. A trivial project is not a good candidate since success of the
deployment does not imply success on non-trivial projects, and thus adds less to the information
needed for the deployment.

 Involve the necessary stakeholders (including management) in the selection process.
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 The SUT of the pilot project should be a good reference for the other projects of the
organization, e.g., the SUT should contain representative GUI components that have to be
automated.

Plan the pilot
The pilot should be treated as a regular development project: make a plan, reserve budget and resources,
report on the progress, define milestones, etc. An extra attention point is to make sure that the people
working on the TAS deployment (i.e., a champion) can spend enough effort on the deployment even when
other projects demand the resources for their activities.  It is important to have management commitment,
particularly on any shared resources.  These people will likely not be able to work full-time on the
deployment.

When the TAS has not been provided by a vendor, but is developed in-house, the corresponding developers
will need to be involved in the deployment activities.

Conduct the pilot
Perform the pilot of the deployment and pay attention to the following points:

 Does the TAS provide the functionality as expected (and promised by the vendor)? If not, this needs
to be addressed as soon as possible. When the TAS is developed in-house the corresponding
developers need to assist the deployment by providing any missing functionality.

 Do the TAS and the existing process support each other? If not they need to be aligned.

Evaluate the pilot
Use all stakeholders for the evaluation.

4.1.2 Deployment
Once the pilot has been assessed, the TAS should only be deployed to the rest of the
department/organization if the pilot has been deemed successful. Rollout should be undertaken
incrementally and be well-managed. Success factors for deployment include:
 An incremental rollout: Perform the rollout to the rest of the organization in steps, in increments. In

this way, the support to the new users comes in "waves" rather than all at once. This allows the
usage of the TAS to increase in steps. Possible bottlenecks can be identified and solved before
they become real problems. Licenses can be added when necessary.

 Adapting and improving processes to fit with the use of the TAS: When different users use the TAS,
different processes come in touch with the TAS, and need to be tuned to the TAS, or the TAS may
need (small) adaptions to the processes.

 Providing training and coaching/mentoring for new users: New users need training and coaching
in the use of the new TAS. Make sure this is in place. Training/workshops should be provided to
the users before they actually use the TAS.

 Defining usage guidelines: It is possible to write guidelines, checklists and FAQs for the usage of
the TAS. This can prevent extensive support questions.

 Implementing a way to gather information about the actual use: There should be an automated way
to gather information about the actual usage of the TAS. Ideally not only the usage itself, but also
what parts of the TAS (certain functionalities) are being used. In this way, the usage of the TAS
can be monitored easily.

 Monitoring TAS use, benefits and costs: Monitoring the usage of the TAS over a certain period of
time indicates whether the TAS is indeed used. This information can also be used to re-calculate
the business case (e.g., how much time has been saved, how many problems prevented).

 Providing support for the test and development teams for a given TAS.
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 Gathering lessons learned from all teams: Perform evaluation/retrospective meetings with the
different teams that use the TAS. In this way, lessons learned can be identified. The teams will feel
that their input is necessary and wanted to improve the usage of the TAS.

 Identifying and implementing improvements: Based on the feedback of the team and the monitoring
of the TAS, identify and implement steps for improvement. Also communicate this clearly to the
stakeholders

4.1.3 Deployment of the TAS Within the Software Lifecycle
The deployment of a TAS depends greatly on the phase of development of the software project which will
be tested by the TAS.

Usually, a new TAS or a new version of it, is deployed either in the beginning of the project or when reaching
a milestone, such as code freeze or the end of a sprint. This is because the deployment activities, with all
the testing and modifications involved, require time and effort. Also this is a good way to mitigate the risk
of the TAS not working and causing disruptions in the test automation process.  However, if there are critical
issues that need to be fixed for the TAS or if a component of the environment in which it runs needs to be
replaced, then the deployment will be done independently from the development phase of the SUT.

4.2 Risk Assessment and Mitigation Strategies

Technical issues can lead to product- or project risks. Typical technical issues include:
 Too much abstraction can lead to difficulty in understanding what really happens (e.g., with

keywords)
 Data-driven: data tables can become too large/complex/cumbersome
 Dependency of the TAS to use certain operating system libraries or other components that may

not be available in all the target environments of the SUT

Typical deployment project risks include:
 Staffing issues: getting the right people to maintain the code base may be difficult
 New SUT deliverables may cause the TAS to operate incorrectly
 Delays in introducing automation
 Delays in updating TAS based on the changes done to the SUT
 The TAS cannot capture the (non-standard) objects it is intended to track

Potential failure points of the TAS project include:
 Migration to a different environment
 Deployment to the target environment
 New delivery from development

There are a number of risk mitigation strategies that can be employed to deal with these risk areas.  These
are discussed below.

The TAS has a software lifecycle of its own, whether it is in-house developed or an acquired solution. One
thing to remember is that the TAS, like any other software, needs to be under version control and its features
documented. Otherwise, it becomes very difficult to deploy different parts of it and make them work
together, or work in certain environments.
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Also, there has to be a documented, clear, and easy to follow deployment procedure. This procedure is
version dependent; therefore, it has to be included under version control as well.

There are two distinct cases when deploying a TAS:
1. Initial deployment
2. Maintenance deployment - TAS already exists and needs to be maintained

Before starting with the first deployment of a TAS, it is important to be sure it can run in its own environment,
it is isolated from random changes, and test cases can be updated and managed.  Both the TAS and its
infrastructure must be maintained.

In the case of first time deployment, the following basic steps are needed:
 Define the infrastructure in which the TAS will run
 Create the infrastructure for the TAS
 Create a procedure for maintaining the TAS and its infrastructure
 Create a procedure for maintaining the test suite that the TAS will execute

The risks related to first time deployment include:
 Total execution time of the test suite may be longer than the planned execution time for the test

cycle.  In this case it is important to make sure that the test suite gets enough time to be executed
entirely before the next scheduled test cycle begins.

 Installation and configuration issues with test environment exist (e.g., database setup and initial
load, services start/stop). In general, the TAS needs an effective way to setup needed
preconditions for the automated test cases within the test environment.

For maintenance deployments, there are additional considerations.  The TAS in itself needs to evolve, and
the updates for it have to be deployed into production.  Before deploying an updated version of the TAS
into production, it needs to be tested like any other software. It is therefore necessary to check the new
functionality, to verify that the test suite can be run on the updated TAS, that reports can be sent, and that
there are no performance issues or other functional regressions.  In some cases the entire test suite may
need to be changed to fit the new version of the TAS.

When maintenance deployment occurs, the following steps are needed:
 Make an assessment of the changes in the new version of the TAS compared to the old one
 Test the TAS for both new functionality and regressions
 Check if the test suite needs to be adapted to the new version of the TAS

An update also incurs the following risks and corresponding mitigation actions:
 The test suite needs to change to run on the updated TAS: make the necessary changes to the

test suite and test them before deploying them on to the TAS.
 Stubs, drivers and interfaces used in testing need to change to fit with the updated TAS: make the

necessary changes to the test harness and test it before deploying to the TAS.
 The infrastructure needs to change to accommodate the updated TAS: make an assessment of the

infrastructure components that need to be changed, perform the changes and test them with the
updated TAS.

 The updated TAS has additional defects or performance issues: perform an analysis of risks vs.
benefits. If the issues discovered make it impossible to update the TAS, it may be best not to
proceed with the update or to wait for a next version of the TAS. If the issues are negligible
compared to the benefits, the TAS can still be updated. Be sure to create a release note with known
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issues to notify the test automation engineers and other stakeholders and try to get an estimate on
when the issues are going to be fixed.

4.3 Test Automation Maintenance

Developing test automation solutions is not trivial. They need to be modular, scalable, understandable,
reliable, and testable. To add even more complexity, test automation solutions – like any other software
system, have to evolve. Whether due to internal changes or changes in the environment in which they
operate, maintenance is an important aspect of architecting a TAS. Maintaining the TAS by adapting it to
new types of systems to be tested, by accommodating support for new software environments, or by making
it compliant to new laws and regulations, helps to ensure reliable and safe operation of the TAS. It also
optimizes the life span and the performance of the TAS.

4.3.1 Types of Maintenance
Maintenance is done on an existing operational TAS and is triggered by modifications, migration, or
retirement of the system. This process can be structured in the following categories:
 Preventive maintenance - Changes are made to make the TAS support more test types, test on

multiple interfaces, test multiple versions of the SUT or support test automation for a new SUT.
 Corrective maintenance - Changes are made to correct failures of the TAS. The best way to

maintain a TAS in operation, thus reducing the risk in using it, is through the execution of regular
maintenance tests.

 Perfective maintenance - The TAS is optimized and non-functional issues are fixed. They can
address the performance of the TAS, its usability, robustness or reliability.

 Adaptive maintenance - As new software systems are launched in the market (operating systems,
database managers, web browsers, etc.), it may be required that the TAS supports them. Also, it
may be the case that the TAS needs to comply with new laws, regulations or industry-specific
requirements. In this case, changes are made to the TAS to make it adapt accordingly.  Note:
usually, conformance to laws and regulations creates mandatory maintenance with specific rules,
requirements and sometimes auditing requirements. Also, as integrating tools are updated and new
versions created, tool integration endpoints need to be maintained and kept functional.

4.3.2 Scope and Approach
Maintenance is a process that can affect all layers and components of a TAS. The scope of it depends on:
 The size and complexity of the TAS
 The size of the change
 The risk of the change

Given the fact that maintenance refers to TAS in operation, an impact analysis is necessary to determine
how the system may be affected by the changes.  Depending on the impact, the changes need to be
introduced incrementally and tests need to be carried out after each step to ensure the continuous
functioning of the TAS.  Note: maintaining the TAS can be difficult if its specifications and documentation
are outdated.

Because time efficiency is the main contributing factor to the success of test automation, it becomes critical
to have good practices for maintaining the TAS including:

 The deployment procedures and usage of the TAS must be clear and documented
 The third party dependencies must be documented, together with drawbacks and known issues
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 The TAS must be modular, so parts of it can be easily replaced
 The TAS must run in an environment that is replaceable or with replaceable components
 The TAS must separate test scripts from the TAF itself
 The TAS must run isolated from the development environment, so that  changes to the TAS will not

adversely affect the test environment
 The TAS together with the environment, test suite and testware artifacts must be under

configuration management

There are also considerations for the maintenance of the third party components and other libraries as
follows:

 Very often it is the case that the TAS will use third party components to run the tests. It may also
be the case that the TAS depends on third party libraries (e.g., the UI automation libraries). All the
third party component parts of the TAS must be documented and under configuration management.

 It is necessary to have a plan in case these external components need to be modified or fixed. The
person responsible for the TAS maintenance needs to know who to contact or where to submit an
issue.

 There must be documentation regarding the license under which the third party components are
used, so that there is information on whether they can be modified, to what degree and by whom.

 For each of the third party components, it is necessary to get information about updates and new
versions. Keeping the third party components and libraries up to date is a preventive action that
pays off the investment in the long-term.

Considerations for naming standards and other conventions include:
 The idea of naming standards and other conventions has a simple reason: the test suite and the

TAS itself has to be easy to read, understand, change and maintain. This saves time in the
maintenance process and also minimizes the risk of introducing regressions or wrong fixes that
could otherwise be easily avoided.

 It is easier to introduce new people to the test automation project when standard naming
conventions are used.

 The naming standards can refer to variables and files, test scenarios, keywords and keyword
parameters. Other conventions refer to pre-requisites and post-actions for test execution, the
content of the test data, the test environment, status of test execution, and execution logs and
reports.

 All the standards and conventions must be agreed upon and documented when starting a test
automation project.

Documentation considerations include:
 The need for good and current documentation for both the test scenarios and the TAS is quite clear,

but there are two issues related to this: someone has to write it and someone has to maintain it.
 While the code of the test tool can be either self-documenting or semi-automatically documented,

all the design, components, integrations with third parties, dependencies and deployment
procedures need to be documented by someone.

 It is a good practice to introduce the writing of documentation as part of the development process.
A task should not be considered as done unless it is documented or the documentation is updated.

Training material considerations include:
 If the documentation for the TAS is well-written, it can be used as a basis for the training material

of the TAS.
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 The training material is a combination of functional specifications of the TAS, design and
architecture of the TAS, deployment and maintenance of the TAS, usage of the TAS (user manual),
practical examples and exercises, and tips and tricks.

 The maintenance of the training material consists of initially writing it and then reviewing it
periodically. It is done in practice by the team members designated as trainers on the TAS and it
most likely happens towards the end of a lifecycle iteration of the SUT (at the end of sprints, for
instance).
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5 Test Automation Reporting and Metrics - 165 mins.

Keywords
automation code defect density, coverage, traceability matrix, equivalent manual test effort, metrics, test
logging, test reporting

Learning Objectives for Test Automation Reporting and Metrics

5.1 Selection of TAS Metrics
ALTA-E-5.1.1   (K2) Classify metrics that can be used to monitor the test automation strategy and

effectiveness

5.2 Implementation of Measurement
ALTA-E-5.2.1    (K3) Implement metrics collection methods to support technical and management

requirements. Explain how measurement of the test automation can be
implemented.

5.3 Logging of the TAS and the SUT
ALTA-E-5.3.1    (K4) Analyze test logging of both TAS and SUT data

5.4 Test Automation Reporting
ALTA-E-5.4.1    (K2) Explain how a test execution report is constructed and published
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5.1 Selection of TAS Metrics

This section focuses on the metrics that can be used to monitor the test automation strategy and the
effectiveness and efficiency of the TAS. These are separate from the SUT related metrics used to monitor
the SUT and the (functional and non-functional) testing of the SUT.  Those are selected by the project’s
overall Test Manager. Test automation metrics allow the TAM and TAE to track progress toward the goals
for test automation and to monitor the impact of changes made to the test automation solution.

The TAS metrics can be divided into two groups: external and internal. The external metrics are those used
to measure the TAS’s impact on other activities (in particular the testing activities). The internal metrics are
those used to measure the effectiveness and efficiency of the TAS in fulfilling its objectives.

The measured TAS metrics typically include the following:
 External TAS metrics
 Automation benefits
 Effort to build automated tests
 Effort to analyze automated test incidents
 Effort to maintain automated tests
 Ratio of failures to defects
 Time to execute automated tests
 Number of automated test cases
 Number of pass and fail results
 Number of false-fail and false-pass results
 Code coverage

 Internal TAS metrics
 Tool scripting metrics
 Automation code defect density
 Speed and efficiency of TAS components

These are each described below.

Automation benefits
It is particularly important to measure and report the benefits of a TAS. This is because the costs (in terms
of the number of people involved over a given period of time) are easy to see. People working outside
testing will be able to form an impression of the overall cost but may not see the benefits achieved.

Any measure of benefit will depend on the objective of the TAS. Typically this may be a savings of time or
effort, an increase in the amount of testing performed (breadth or depth of coverage, or frequency of
execution), or some other advantage such as increased repeatability, greater use of resources, or fewer
manual errors. Possible measures include:
 Number of hours of manual test effort saved
 Reduction in time to perform regression testing
 Number of additional cycles of test execution achieved
 Number or percentage of additional tests executed
 Percentage of automated test cases related to the entire set of test cases (although automated

cannot easily be compared to manual test cases)
 Increase in coverage (requirements, functionality, structural)
 Number of defects found earlier because of the TAS (when the average benefit of defects found

earlier is known, this can be "calculated" to a sum of prevented costs)
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 Number of defects found because of the TAS which would not have been found by manual testing
(e.g., reliability defects)

Note that test automation generally saves manual test effort. This effort can be devoted to other kinds of
(manual) testing (e.g., exploratory testing). Defects found by these additional tests can also be seen as
indirect benefits of the TAS, as the test automation enabled these manual tests to be executed. Without the
TAS these tests would not have been executed and subsequently the additional defects would not have
been found.

Effort to build automated tests
The effort to automate tests is one of the key costs associated with test automation. This is often more than
the cost of running the same test manually and therefore can be a detriment to expanding the use of test
automation. While the cost to implement a specific automated test will depend largely on the test itself,
other factors such as the scripting approach used, familiarity with the test tool, the environment, and the
skill level of the test automation engineer will also have an impact.

Because larger or more complex tests typically take longer to automate than short or simple tests,
computing the build cost for test automation may be based on an average build time. This may be further
refined by considering the average cost for a specific set of tests such as those targeting the same function
or those at a given test level. Another approach is to express the build cost as a factor of the effort required
to run the test manually (equivalent manual test effort, EMTE). For example, it may be that it takes twice
the manual test effort to automate a test case, or two times the EMTE.

Effort to analyze SUT failures
Analyzing failures in SUT discovered through automated test execution can be significantly more complex
than for a manually executed test because the events leading up to the failure of a manual test are often
known by the tester running the test. This can be mitigated as described in design level in Chapter 3.1.4
and in reporting level in Chapters 5.3 & 5.4. This measure can be expressed as an average per failed test
case or it may be expressed as a factor of EMTE. The latter being particularly suitable where the automated
tests vary significantly in complexity and execution length.

The available logging of the SUT and the TAS play a crucial role in analyzing failures. The logging should
provide enough information to perform this analysis efficiently. Important logging features include:
 SUT logging and TAS logging should be synchronized
 The TAS should log the expected and actual behavior
 The TAS should log the actions to be performed

The SUT, on the other hand, should log all actions that are performed (regardless of whether the action is
the result of manual or automated testing).  Any internal errors should be logged and any crash dumps and
stack traces should be available.

Effort to maintain automated tests
The maintenance effort required to keep automated tests in sync with the SUT can be very significant and
ultimately may outweigh the benefits achieved by the TAS. This has been the cause of failure for many
automation efforts. Monitoring the maintenance effort is therefore important to highlight when steps need
to be taken to reduce the maintenance effort or at least prevent it from growing unchecked.

Measures of maintenance effort can be expressed as a total for all the automated tests requiring
maintenance for each new release of the SUT. They may also be expressed as an average per updated
automated test or as a factor of EMTE.
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A related metric is the number or percentage of tests requiring maintenance work.

When maintenance effort for automated tests is known (or can be derived), this information can play a
crucial role in deciding whether or not to implement certain functionality or to fix a certain defect. The effort
required to maintain the test case due to the changed software should be considered with the change of
the SUT.

Ratio of failures to defects
A common problem with automated tests is that many of them can fail for the same reason – a single defect
in the software. While the purpose of tests is to highlight defects in the software, having more than one test
highlight the same defect is wasteful. This is particularly the case for automated testing as the effort required
to analyze each failed test can be significant. Measuring the number of automated tests that fail for a given
defect can help indicate where this may be a problem. The solution lies in the design of the automated tests
and their selection for execution.

Time to execute automated tests
One of the easier metrics to determine is the time it takes to execute the automated tests. In the beginning
of the TAS this might not be important, but as the number of automated test cases increases, this metric
may become quite important.

Number of automated test cases
This metric can be used to show the progression made by the test automation project. But one has to take
into account that just the number of automated test cases does not reveal a lot of information; for example,
it does not indicate that the test coverage has increased.

Number of pass and fail results
This is a common metric and tracks how many automated tests passed and how many failed to achieve
the expected result.  Failures have to be analyzed to determine if the failure was due to a defect in the SUT
or was due to external issues such as a problem with the environment or with the TAS itself.

Number of false-fail and false-pass results
As was seen in several previous metrics, it can take quite some time to analyze test failures. This is even
more frustrating when it turns out to be a false alarm. This happens when the problem is in the TAS or test
case but not in the SUT. It is important that the number of false alarms (and the potentially wasted effort)
are kept low.  False-fails can reduce confidence in the TAS.  Conversely, false-pass results may be more
dangerous.  When a false-pass occurs, there was a failure in the SUT, but it was not identified by the test
automation so a pass result was reported.  In this case, a potential defect may escape detection.  This can
occur because the verification of the outcome was not done properly, an invalid test oracle was used or the
test case was expecting the wrong result.

Note that false alarms can be caused by defects in the test code (see metric "Automation code defect
density") but may also be caused by an unstable SUT that is behaving in an unpredictable manner (e.g.,
timing out).  Test hooks can also cause false alarms due to the level of intrusion they are causing.

Code coverage
Knowing the SUT code coverage provided by the different test cases can reveal useful information. This
can also be measured at a high level, e.g., the code coverage of the regression test suite. There is no
absolute percentage that indicates adequate coverage, and 100% code coverage is unattainable in
anything other than the simplest of software applications. However, it is generally agreed that more
coverage is better as it reduces overall risk of software deployment. This metric can indicate activity in the
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SUT as well.  For example, if the code coverage drops, this most likely means that functionality has been
added to the SUT, but no corresponding test case has been added to the automated test suite.

Tool scripting metrics
There are many metrics that can be used to monitor automation script development. Most of these are
similar to source code metrics for the SUT. Lines of code (LOC) and cyclomatic complexity can be used to
highlight overly large or complex scripts (suggesting possible redesign is needed).

The ratio of comments to executable statements can be used to give a possible indication of the extent of
script documentation and annotation. The number of non-conformances to scripting standards can give an
indication of the extent to which those standards are being followed.

Automation code defect density
Automation code is no different than the code of the SUT in that it is software and will contain defects.
Automation code should not be considered less important than the SUT code. Good coding practices and
standards should be applied and the result of these monitored by metrics such as code defect density.
These will be easier to collect with the support of a configuration management system.

Speed and efficiency of TAS components
Differences in the time it takes to perform the same test steps in the same environment can indicate a
problem in the SUT. If the SUT is not performing the same functionality in the same elapsed time,
investigation is needed. This may indicate a variability in the system that is not acceptable and one that
could worsen with increased load The TAS needs to be performing well enough for it not to hinder the
performance of SUT. If the performance is critical requirement for the SUT then the TAS needs to be
designed in a way that takes this into account.

Trend metrics
With many of these metrics it is the trends (i.e., the way in which the measures change over time) that may
be more valuable to report than the value of a measure at a specific time. For example, knowing that the
average maintenance cost per automated test requiring maintenance is more than it was for the previous
two releases of the SUT may prompt action to determine the cause of the increase and undertake steps to
reverse the trend.

The cost of measuring should be as low as possible and this can often be achieved by automating the
collection and reporting.

5.2 Implementation of Measurement

Since a test automation strategy has automated testware at its core, the automated testware can be
enhanced to record information about its use. Where abstraction is combined with structured testware, any
enhancements made to the underlying testware can be utilized by all of the higher level automated test
scripts. For example, enhancing the underlying testware to record the start and end time of execution for a
test may well apply to all tests.

Features of automation that support measurement and report generation
The scripting languages of many test tools support measurement and reporting through facilities that can
be used to record and log information before, during, and after test execution of individual tests, sets of
tests and an entire test suite.



Certified Tester
Advanced Level Syllabus – Test Automation Engineer

International
Software Testing

Qualifications Board

Version 2016 Page 57 of 84 21 Oct 2016
© International Software Testing Qualifications Board

The reporting on each of a series of test runs needs to have in place an analysis feature to take into account
the results of the previous test runs so it can highlight trends (such as changes in the test success rate).

Automating testing typically requires automation of both the test execution and the test verification, the
latter being achieved by comparing specific elements of the test outcome with a pre-defined expected
outcome. This comparison is generally best undertaken by a test tool. The level of information that is
reported as a result of this comparison must be considered.  It is important that the status of the test be
determined correctly (e.g., pass, fail). In the case of a failed status, more information about the cause of
the failure will be required (e.g., screen shots).

Distinguishing between expected differences in the actual and expected outcome of a test is not always
trivial though tool support can help greatly in defining comparisons that ignore the expected differences
(such as dates and times) while highlighting any unexpected differences.

Integration with other third party tools (spreadsheets, XML, documents, databases, report tools,
etc.)
When information from the execution of automated test cases is used in other tools (for tracking and
reporting, e.g., updating traceability matrix), it is possible to provide the information in a format that is
suitable for these third party tools. This is often achieved through existing test tool functionality (export
formats for reporting) or by creating customized reporting that is output in a format consistent with other
programs (“.xls” for Excel, “.doc” for Word, “.html” for Web, etc.).

Visualization of results (dashboards, charts, graphs, etc.)
Test results should be made visible in charts.  Consider using colors to indicate problems in the test
execution such as traffic lights to indicate the progress of the test execution / automation so that decisions
can be made based on reported information. Management is particularly interested in visual summaries to
see the test result in one glance; in case more information is needed, they can still dive in to the details.

5.3 Logging of the TAS and the SUT

Logging is very important in the TAS, including logging for both the test automation itself and the SUT. Test
logs are a source that frequently are used to analyze potential problems. In the following section are
examples of test logging, categorized by TAS or SUT.

TAS logging (whether the TAF or the test case itself logs the information is not so important and depends
on the context) should include the following:
 Which test case is currently under execution, including start and end time.
 The status of the test case execution because, while failures can easily be identified in log files, the

framework itself should also have this information and should report via a dashboard. The execution
status of the test case can be pass, fail or TAS error. The result of TAS error is used for situations
where the problem is not in the SUT.

 Details of the test log at a high level (logging significant steps) including timing information.
 Dynamic information about the SUT (e.g., memory leaks) that the test case was able to identify

with the help of third party tools. Actual results and failures of these dynamic measurements should
be logged with the test case that was executing when the incident was detected.

 In the case of reliability testing / stress testing (where numerous cycles are performed) a counter
should be logged, so it can be easily determined how many times test cases have been executed.

 When test cases have random parts (e.g., random parameters, or random steps in state-machine
testing), the random number/choices should be logged.
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 All actions a test case performs should be logged in such a way that the log file (or parts of it) can
be played back to re-execute the test with exactly the same steps and the same timing.  This is
useful to check for the reproducibility of an identified failure and to capture additional information.
The test case action information could also be logged on the SUT itself for use when reproducing
customer-identified issues (the customer runs the scenario, the log information is captured and can
then be replayed by the development team when troubleshooting the issue).

 Screenshots and other visual captures can be saved during test execution for further use during
failure analysis

 Whenever a test case encounters a failure, the TAS should make sure that all information needed
to analyze the problem is available/stored, as well as any information regarding the continuation of
testing, if applicable. Any associated crash dumps and stack traces should be saved by the TAS to
a safe location. Also any log files which could be overwritten (cyclic buffers are often used for log
files on the SUT) should be copied to this location where they will be available for later analysis.

 Use of color can help to distinguish different types of logged information (e.g., errors in red,
progress information in green).

SUT logging:
 When the SUT identifies a problem, all necessary information needed to analyze the issue should

be logged, including date and time stamps, source location of issue, error messages, etc.
 The SUT can log all user interaction (directly via the available user interface, but also via network

interfaces, etc.). In this way issues identified by customers can be analyzed properly, and
development can try to reproduce the problem.

 At startup of the system, configuration information should be logged to a file, consisting of the
different software/firmware versions, configuration of the SUT, configuration of the operating
system, etc.

All the different logging information should be easily searchable. A problem identified in the log file by the
TAS should be easily identified in the log file of the SUT, and vice versa (with or without additional tooling).
Synchronizing various logs with a time stamp facilitates correlation of what occurred when an error was
reported.

5.4 Test Automation Reporting

The test logs give detailed information about the execution steps, actions and responses of a test case
and/or test suite. However, the logs alone cannot provide a good overview of the overall execution result.
For this, it is necessary to have in place reporting functionality. After each execution of the test suite, a
concise report must be created and published. A reusable report generator component could be used for
this.

Content of the reports
The test execution report must contain a summary giving an overview of the execution results, the system
being tested and the environment in which the tests were run which is appropriate for each of the
stakeholders.

It is necessary to know which tests have failed and the reasons for failure. To make troubleshooting easier,
it is important to know the history of the execution of the test and who is responsible for it (generally the
person who created or last updated it). The responsible person needs to investigate the cause of failure,
report the issues related to it, follow-up on the fix of the issue(s), and check that the fix has been correctly
implemented.
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Reporting is also used to diagnose any failures of the TAF components (see Chapter 7).

Publishing the reports
The report should be published for everyone interested in the execution results. It can be uploaded on a
website, sent to a mailing list or uploaded to another tool such as a test management tool. From a practical
side, it is most likely that the ones interested in the execution result will look at it and analyze it if they are
given a subscription facility and can receive the report by email.

Option is to identify problematic parts of the SUT, is to keep a history of the reports, so that statistics about
test cases or test suites with frequent regressions can be gathered.
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6 Transitioning Manual Testing to an Automated
Environment - 120 mins.

Keywords
confirmation testing, regression testing

Learning Objectives for Transitioning Manual Testing to an Automated
Environment

6.1 Criteria for Automation
ALTA-E-6.1.1 (K3) Apply criteria for determining the suitability of tests for automation
ALTA-E-6.1.2 (K2) Understand the factors in transitioning from manual to automation testing

6.2 Identify Steps Needed to Implement Automation within Regression Testing
ALTA-E-6.2.1 (K2) Explain the factors to consider in implementing automated regression testing

6.3 Factors to Consider when Implementing Automation within New Feature
Testing
ALTA-E-6.3.1 (K2) Explain the factors to consider in implementing automation within new

feature testing

6.4 Factors to Consider when Implementing Automation of Confirmation Testing
ALTA-E-6.4.1 (K2) Explain the factors to consider in implementing automated confirmation testing
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6.1 Criteria for Automation

Traditionally, organizations have developed manual test cases. When deciding to migrate toward an
automated test environment, one must evaluate the current state of manual tests and determine the most
effective approach to automating these testing assets. The existing structure of a manual test may or may
not be suited for automation, in which case a complete re-write of the test to support automation may be
necessary. Alternatively, relevant components of existing manual tests (e.g., input values, expected results,
navigational path) may be extracted from existing manual tests and reused for automation. A manual test
strategy that takes into account automation will allow for tests whose structure facilitates migration to
automation.

Not all tests can or should be automated, and sometimes the first iteration of a test may be manual.
Therefore there are two aspects of transitioning to consider: the initial conversion of existing manual tests
to automation, and the subsequent transition of new manual tests to automation.

Also note that certain test types can only be executed (effectively) in an automated way, e.g., reliability
tests, stress tests, or performance tests.

With test automation it is possible to test applications and systems without a user interface.  In this case,
testing can be done on the integration level via interfaces in the software. While these kinds of test cases
could also be executed manually (using manually entered commands to trigger the interfaces), this may
not be practical. For example, with automation it may be possible to insert messages in a message queue
system. In this way testing can start earlier (and can identify defects earlier), when manual testing is not yet
possible.

Prior to commencing an automated testing effort, one needs to consider the applicability and viability of
creating automated vs. manual tests. The suitability criteria may include, but are not limited to:

 Frequency of use
 Complexity to automate
 Compatibility of tool support
 Maturity of test process
 Suitability of automation for the stage of the software product lifecycle
 Sustainability of the automated environment
 Controllability of the SUT

Each of these is explained in more detail below.

Frequency of use
How often a test needs to be run is one consideration as to the viability of whether or not to automate.
Tests that are run more regularly, as a part of a major or minor release cycle, are better candidates for
automation as they will be used frequently. As a general rule, the greater the number of application
releases—and therefore corresponding test cycles—the greater the benefit of automating tests.
As functional tests become automated, they can be used in subsequent releases as a part of regression
testing. Automated tests used in regression testing will provide high return on investment (ROI) and risk
mitigation for the existing code base.

If a test script is run once a year, and the SUT changes within the year, it may not be feasible or efficient to
create an automated test. The time it might take to adapt the test on a yearly basis to conform to the SUT
might be best done manually.
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Complexity to automate
In the cases where a complex system needs to be tested, there may be a tremendous benefit from
automation to spare the manual tester the difficult task of having to repeat complex steps which are tedious,
time-consuming, and error-prone to execute.

However, certain test scripts may be difficult or not cost-effective to automate. There is a range of factors
that might affect this, including: an SUT that is not compatible with existing available automated test
solutions; the requirement to produce substantial program code and develop calls to APIs in order to
automate; the multiplicity of systems that need to be addressed as part of a test execution; the interaction
with external interfaces and/or proprietary systems; some aspects of usability testing; the amount of time
needed to test the automation scripts, etc.

Compatibility and tool support
There is a wide range of development platforms used to create applications. The challenge to the tester is
to know what available test tools exist (if any) to support any given platform, and to what extent the platform
is supported. Organizations use a variety of testing tools, including those from commercial vendors, open
source, and in-house developed. Each organization will have different needs and resources to support test
tools. Commercial vendors typically provide for paid support, and in the case of the market leaders, usually
have an eco-system of experts who can assist with test tool implementation. Open source tools may offer
support such as online forums from which users can get information and post questions. In-house
developed test tools rely on existing staff to provide support.

The issue of test tool compatibility should not be underestimated. Embarking on a project of test automation
without fully understanding the level of compatibility between test tools and the SUT can have disastrous
results. Even if most of the tests for the SUT can be automated, there might be the situation where the most
critical tests cannot.

Maturity of test process
In order to effectively implement automation within a test process, that process must be structured,
disciplined and repeatable. Automation brings an entire development process into the existing testing
process which requires managing the automation code and related components.

Suitability of automation for the stage of the software product lifecycle
An SUT has a product lifecycle which can span from years to decades. As the development of a system
begins, the system changes and expands to address defects and add refinements to meet end user needs.
In the early stages of a system’s development, change may be too rapid to implement an automated testing
solution. As screen layouts and controls are optimized and enhanced, creating automation in a dynamically
changing environment may require continuous re-work, which is not efficient or effective. This would be
similar to trying to change a tire on a moving car; it’s better to wait for the car to stop. For large systems in
a sequential development environment, when a system has stabilized and includes a core of functionality,
this then becomes the best time to begin the implementation of automated tests.

Over time, systems reach the end of their product lifecycles, and are either retired or redesigned to use
newer and more efficient technology. Automation is not recommended for a system nearing the end of its
lifecycle as there will be little value in undertaking such a short-lived initiative. However, for systems that
are being redesigned using a different architecture but preserving the existing functionality, an automated
testing environment which defines data elements will be equally useful in the old and new systems. In this
case, reuse of test data would be possible and recoding of the automated environment to be compatible
with the new architecture would be necessary.

Sustainability of the environment
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A test environment for automation needs to be flexible and adaptable to the changes that will occur to the
SUT over time. This includes the ability to rapidly diagnose and correct problems with automation, the ease
with which automation components can be maintained, and the facility with which new features and support
can be added into the automated environment. These attributes are an integral part of the overall design
and implementation of the gTAA.

Controllability of the SUT (preconditions, setup and stability)
The TAE should identify control and visibility characteristics in the SUT that will aid in the creation of
effective automated tests. Otherwise the test automation relies on UI interactions only, resulting in an less
maintainable test automation solution. See Section 2.3 on Design for Testability and Automation for more
information.

Technical planning in support of ROI analysis
Test automation can provide varying degrees of benefit to a test team. However, a significant level of effort
and cost is associated with the implementation of an effective automated testing solution. Prior to incurring
the time and effort to develop automated tests, an assessment should be conducted to evaluate what the
intended and potential overall benefit and outcome of implementing test automation might be. Once this is
determined, activities necessary to effect such a plan should be defined and associated costs should be
determined in order to calculate the ROI.

To adequately prepare for transitioning to an automated environment, the following areas need to be
addressed:
 Availability of tools in the test environment for test automation
 Correctness of test data and test cases
 Scope of the test automation effort
 Education of test team to the paradigm shift
 Roles and responsibilities
 Cooperation between developers and test automation engineers
 Parallel effort
 Test automation reporting

Availability of tools in the test environment for test automation
Selected test tools need to be installed and confirmed to be functioning in the test lab environment. This
may involve downloading any service packs or release updates, selecting the appropriate installation
configuration—including add-ins—necessary to support the SUT, and ensuring the TAS functions correctly
in the test lab environment vs. the automation development environment.

Correctness of test data and test cases
Correctness and completeness of manual test data and test cases is necessary to ensure use with
automation will provide predictable results. Tests run under automation need explicit data for input,
navigation, synchronization, and validation.

Scope of the test automation effort
In order to show early success in automation and gain feedback on technical issues which may impact
progress, starting off with a limited scope will facilitate future automation tasks. A pilot project may target
one area of a system’s functionality that is representative of overall system interoperability. Lessons learned
from the pilot will help adjust future time estimates and schedules, and identify areas requiring specialized
technical resources. A pilot project provides q quick way to show early automation success, which bolsters
further management support.
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To help in this, test cases to be automated should be selected wisely. Pick the cases that require little effort
to automate, but provide a high added value. Automatic regression or smoke tests can be implemented and
add considerable value as these tests normally are executed quite often, even daily. Another good
candidate to start with is reliability testing. These tests are often composed of steps and are executed over
and over again, revealing problems which are hard to detect manually. These reliability tests take little effort
to implement, but can show added value very soon.

These pilot projects put the automation in the spotlight (manual test effort saved, or serious issues
identified) and pave the way for further extensions (effort and money).

Additionally, prioritization should be given to tests that are critical to the organization as these will show the
greatest value initially. However, within this context, it is important that as part of a pilot effort, the most
technically challenging tests to automate are avoided. Otherwise, too much effort will be spent trying to
develop automation with too few results to show. As a general rule, identifying tests which share
characteristics with a large part of the application will provide the necessary momentum to keep the
automation effort alive.

Education of test team to paradigm shift
Testers come in many flavors: some are domain experts having come from the end user community or
involvement as a business analyst, while others have strong technical skills which enable them to better
understand the underlying system architecture. For testing to be effective, a broad mix of backgrounds is
preferable. As the test team shifts to automation, roles will become more specialized. Changing the makeup
of the test team is essential for automation to be successful, and educating the team early on of the intended
change will help reduce anxiety over roles or the possible thought of being made redundant. When
addressed correctly, the shift toward automation should get everybody on the test team very excited and
ready to participate in the organizational and technical change.

Roles and responsibilities
Test automation should be an activity in which everybody can participate. However, that does not equate
to everybody having the same role. Designing, implementing, and maintaining an automated test
environment is technical in nature, and as such should be reserved for individuals with strong programming
skills and technical backgrounds. The results of an automated testing development effort should be an
environment that is usable by technical and non-technical individuals alike. In order to maximize the value
of an automated test environment there is a need for individuals with domain expertise and testing skills as
it will be necessary to develop the appropriate test scripts (including corresponding test data). These will
be used to drive the automated environment and provide the targeted test coverage. Domain experts review
reports to confirm application functionality, while technical experts ensure that the automated environment
is operating correctly and efficiently. These technical experts can also be developers with an interest in
testing. Experience in software development is essential for designing software which is maintainable, and
this is of utmost importance in test automation. Developers can focus on the test automation framework or
test libraries. The implementation of test cases should stay with testers.

Cooperation between developers and test automation engineers
Successful test automation also requires the involvement of the software development team as well as
testers. Developers and testers will need to work much more closely together for test automation so that
developers can provide support personnel and technical information on their development methods and
tools. Test automation engineers may raise concerns about the testability of system designs and developer
code. This especially will be the case if standards are not followed, or if developers use odd, homegrown
or even very new libraries/objects. For example, developers might choose a third party GUI control which
may not be compatible with the selected automation tool. Finally, an organization’s project management
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team must have a clear understanding about the types of roles and responsibilities required for a successful
automation effort.

Parallel effort
As a part of transition activities, many organizations create a parallel team to begin the process of
automating existing manual test scripts. The new automated scripts are then incorporated into the testing
effort, replacing the manual scripts. However, prior to doing so, it is often recommended to compare and
validate that the automated script is performing the same test and validation as the manual script it is
replacing.

In many instances, an assessment of the manual scripts will be made prior to conversion to automation. As
a result of such an assessment, it might be determined that there is a need to restructure existing manual
test scripts to a more efficient and effective approach under automation.

Automation reporting
There are various reports that can automatically be generated by a TAS. These include pass/fail status of
individual scripts or steps within a script, overall test execution statistics, and overall performance of the
TAS. It is equally important to have visibility into the correct operation of the TAS so that any application
specific results which are reported can be deemed accurate and complete (See Chapter 7: Verifying the
TAS).

6.2 Identify Steps Needed to Implement Automation within Regression
Testing

Regression testing provides a great opportunity to use automation. A regression test bed grows as today’s
functional tests become tomorrow’s regression tests. It is only a matter of time before the number of
regression tests becomes greater than the time and resources available to a traditional manual test team.

In developing steps to prepare to automate regression tests. A number of questions must be asked:
 How frequently should the tests be run?
 What is the execution time for each test, for the regression suite?
 Is there functional overlap between tests?
 Do tests share data?
 Are the tests dependent on each other?
 What pre-conditions are required before test execution?
 What % of SUT coverage do the tests represent?
 Do the tests currently execute without failure?
 What should happen when regression tests take too long?

Each of these is explained in more detail below.
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Frequency of test execution
Test that are executed often as part of regression testing are the best candidates for automation. These
tests have already been developed, exercise known SUT functionality, and will have their execution time
reduced tremendously through the use of automation.

Test execution time
The time it takes to execute any given test or an entire test suite is an important parameter in evaluating
the value of implementing automated testing within regression testing. One option is to start by
implementing automation on time-consuming tests. This will allow for each test to run more quickly and
efficiently, while also adding additional cycles of automated regression test execution. The benefit is
additional and more frequent feedback on SUT quality, and reduced deployment risk.

Functional overlap
When automating existing regression tests, it is a good practice to identify any functional overlap that exists
between and among test cases and, where possible, reduce that overlap in the equivalent automated test.
This will bring further efficiencies in the automated test execution time, which will be significant as more
and more automated test cases are executed. Often, tests developed using automation will take on a new
structure since they depend on reusable components and shared data repositories. It is not uncommon to
decompose existing manual tests into several smaller automated tests. Likewise, consolidation of several
manual tests into a larger automated test may be the appropriate solution. Manual tests need to be
evaluated individually, and as a group, so that an effective conversion strategy can be developed.

Data sharing
Tests often share data. This can occur when tests use the same record of data to execute different SUT
functionality. An example of this might be test case “A” which verifies an employee’s available vacation
time, while test case “B” might verify what courses the employee took as part of their career development
goals. Each test case uses the same employee, but verifies different parameters. In a manual test
environment, the employee data would typically be duplicated many times across each manual test case
which verified employee data using this employee. However, in an automated test, data which is shared
should—where possible and feasible—be stored and accessed from a single source to avoid duplication,
or introduction of errors.

Test interdependency
When executing complex regression test scenarios, one test may have a dependency on one or more other
tests. This occurrence can be quite common and may happen, by way of example, as a result of a new
“Order ID” that gets created as a result of a test step. Subsequent tests may want to verify that: a) the new
order is correctly displayed in the system, b) changes to the order are possible, or c) deleting the order is
successful. In each case, the “Order ID” value which is dynamically created in the first test must be captured
for reuse by later tests. Depending on the design of the TAS, this can be addressed.

Test preconditions
Often a test cannot be executed prior to setting initial conditions. These conditions may include selecting
the correct database or the test data set from which to test, or setting initial values or parameters. Many of
these initialization steps that are required to establish a test’s precondition can be automated. This allows
for a more reliable and dependable solution when these steps cannot be missed prior to executing the tests.
As regression tests are converted to automation, these preconditions need to be a part of the automation
process.
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SUT coverage
Every time tests are executed, part of an SUT’s functionality is exercised. In order to ascertain overall SUT
quality, tests need to be designed in order to have the broadest and deepest coverage. Additionally, code
coverage tools can be used to monitor execution of automated tests to help quantify the effectiveness of
the tests. Through automated regression testing, over time we can expect that additional tests will provide
additional coverage. Measuring this provides an effective means of quantifying the value of the tests
themselves.

Executable tests
Before converting a manual regression test into an automated test, it is important to verify that the manual
test operates correctly. This then provides the correct starting point to ensure a successful conversion to
an automated regression test. If the manual test does not execute correctly—either because it was poorly
written, uses invalid data, is out of date or out of sync with the current SUT, or as a result of an SUT defect—
converting it to automation prior to understanding and/or resolving the root cause of the failure will create a
non-functioning automated test which is wasteful and unproductive.

Large regression test sets
The set of regression tests for an SUT can become quite large, so large that the test set cannot be
completely executed overnight, or over the weekend. In that case, concurrent execution of test cases is a
possibility if multiple SUTs are available (for PC applications this probably does not pose a problem, but
when the SUT consists of an airplane or space rocket this is a different story). SUTs can be scarce and/or
expensive making concurrency an unrealistic option. In this case, a possibility may be to run only parts of
the regression test. Over time (weeks) the complete set eventually will be run. The choice of which part of
the regression test suite to execute can also be based on a risk analysis (which parts of the SUT have been
changed lately?).

6.3 Factors to Consider when Implementing Automation within New Feature
Testing

In general it is easier to automate test cases for new functionality as the implementation is not yet finished
(or better: not yet started). The test engineer can use his knowledge to explain to the developers and
architects what exactly is needed in the new functionality such that it can be tested effectively and efficiently
by the test automation solution.

As new features are introduced into an SUT, testers are required to develop new tests against these new
features and corresponding requirements. The TAE must solicit feedback from test designers with domain
expertise and determine if the current TAS will meet the needs of the new features.  This analysis includes,
but is not limited to, the existing approach used, third party development tools, test tools used, etc.

Changes to the TAS must be evaluated against the existing automated testware components so that
changes or additions are fully documented, and do not affect the behavior (or performance) of existing TAS
functionality.

If a new feature is implemented with, as an example, a different class of object, it may be necessary to
make updates or additions to the testware components. Additionally, compatibility with existing test tools
must be evaluated and, where necessary, alternative solutions identified.  For example, if using a keyword-
driven approach, it may be necessary to develop additional keywords or modify/expand existing keywords
to accommodate the new functionality.
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There may be a requirement to evaluate additional testing tools to support the new environment under
which the new functionality exists.  For example, a new testing tool might be necessary if the existing testing
tool only supports HTML.

New test requirements may affect existing automated tests and testware components. Therefore, prior to
making any changes, existing automated tests should be run against the new/updated SUT to verify and
record any changes to proper operation of the existing automated tests. This should include mapping
interdependencies to other tests. Any new changes in technology will necessitate evaluating the current
testware components (including test tools, function libraries, APIs, etc.) and compatibility with the existing
TAS.

When existing requirements change, the effort to update test cases which verify these requirements should
be part of the project schedule (work breakdown structure).  Traceability from the requirements to the test
cases will indicate which test cases need to be updated.  These updates should be part of the overall plan.

Finally, one needs to determine if the existing TAS will continue to meet current SUT needs. Are
implementation techniques still valid, or is a new architecture required, and can this be done by extending
current capability?

When new functionality is being introduced, this is an opportunity for test engineers to make sure that the
newly defined functionality will be testable.  During the design phase, testing should be taken into account
by planning to provide test interfaces which can be used by scripting languages or the test automation tool
to verify the new functionality.  See Section 2.3, Design for Testability and Automation, for more information.

6.4 Factors to Consider when Implementing Automation of Confirmation
Testing

Confirmation testing is performed following a code fix that addresses a reported defect. A tester typically
follows the steps necessary to replicate the defect to verify that the defect no longer exists.

Defects have a way of reintroducing themselves into subsequent releases (this may indicate a configuration
management problem) and therefore confirmation tests are prime candidates for automation. Using
automation will help reduce execution time for confirmation testing. The confirmation test can be added to,
and complement, the existing automated regression test bed.

The automated confirmation test typically has a narrow scope of functionality. Implementation can occur at
any point once a defect is reported and the steps needed to replicate it are understood. Automated
confirmation tests can be incorporated into a standard automated regression suite or, where practical,
subsumed into existing automated tests. With either approach, the value of automating defect confirmation
testing still holds.

Tracking automated confirmation tests allows for additional reporting of time and number of cycles
expended in resolving defects.

In addition to confirmation testing regression testing is necessary to ensure new defects have not been
introduced as a side effect of the defect fix. Impact analysis may be required to determine the appropriate
scope of regression testing.
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7 Verifying the TAS - 120 mins.

Keywords
verification

Learning Objectives for Verifying the TAS

7.1 Verifying Automated Test Environment Components
ALTA-E-7.1.1  (K3) Verify the correctness of an automated test environment including test tool setup

7.2 Verifying the Automated Test Suite
ALTA-E-7.2.1 (K3) Verify the correct behavior for a given automated test script and/or test suite
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7.1 Verifying Automated Test Environment Components

The test automation team needs to verify that the automated test environment is working as expected.
These checks are done, for example, before starting automated testing.

There are a number of steps that can be taken to verify the components of the automated test environment.
Each of these is explained in more detail below:

Test tool installation, setup, configuration, and customization
The TAS is comprised of many components. Each of these needs to be accounted for to ensure reliable
and repeatable performance. At the core of a TAS are the executable components, corresponding
functional libraries, and supporting data and configuration files. The process of configuring a TAS may
range from the use of automated installation scripts to manually placing files in corresponding folders.
Testing tools, much like operating systems and other applications, regularly have service packs or may
have optional or required add-ins to ensure compatibility with any given SUT environment.

Automated installation (or copy) from a central repository has advantages. It can be guaranteed that tests
on different SUTs have been performed with the same version of the TAS, and the same configuration of
the TAS, where this is appropriate. Upgrades to the TAS can be made through the repository. Repository
usage and the process to upgrade to a new version of the TAS should be the same as for standard
development tools.

Test scripts with known passes and failures
When known passing test cases fail, it is immediately clear that something is fundamentally wrong and
should be fixed as soon as possible. Conversely, when test cases pass even though they should have
failed, we need to identify the component that did not function correctly. It is important to verify the correct
generation of log files and performance metrics as well as automated setup and teardown of the test
case/script. It is also helpful to execute a few tests from the different test types and levels (functional tests,
performance tests, component tests, etc.). This should also be performed on the level of the framework.

Repeatability in setup/teardown of the test environment
A TAS will be implemented on a variety of systems and servers. To ensure that the TAS works properly in
each environment, it is necessary to have a systematic approach to loading and unloading the TAS from
any given environment. This is successfully achieved when the building and rebuilding of the TAS provides
no discernible difference in how it operates within and across multiple environments. Configuration
management of the TAS components ensures that a given configuration can dependably be created.

Configuration of the test environment and components
Understanding and documenting the various components that comprise the TAS provides the necessary
knowledge for what aspects of the TAS may be affected or require change when the SUT environment
changes.

Connectivity against internal and external systems/interfaces
Once a TAS is installed in a given SUT environment, and prior to actual use against an SUT, a set of checks
or preconditions should be administered to ensure that connectivity to internal and external systems,
interfaces, etc., is available. Establishing preconditions for automation is essential in ensuring that the TAS
has been installed and configured correctly.

Intrusiveness of automated test tools
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The TAS often will be tightly coupled with the SUT. This is by design so that there is a high level of
compatibility especially as it pertains to GUI level interactions. However, this tight integration may also have
negative effects. These may include: a SUT behaves differently when the TAS resides within the SUT
environment; the SUT has different behavior than when used manually; SUT performance is affected with
the TAS in the environment or when executing the TAS against the SUT.

The level of intrusion/intrusiveness differs with the chosen automated test approach.  For example:
 When interfacing with the SUT from external interfaces, the level of intrusion will be very low.

External interfaces can be electronic signals (for physical switches), USB signals for USB devices
(like keyboards). With this approach the end user is simulated in the best way. In this approach the
software of the SUT is not changed at all for testing purposes. The behavior and the timing of the
SUT are not influenced by the test approach. Interfacing with the SUT in this way can be very
complex. Dedicated hardware might be necessary, hardware description languages are needed to
interface with the SUT, etc. For software only systems this is not a typical approach, but for products
with embedded software this approach is more common.

 When interfacing with the SUT on the GUI level, the SUT environment is adapted in order to inject
UI commands and to extract information needed by the test cases. The behavior of the SUT is not
directly changed, but the timing is affected which can result in an impact on the behavior. The level
of intrusion is higher than in the previous point but interfacing with the SUT in this way is less
complex. Often commercial off-the-shelf tools can be used for this type of automation.

 Interfacing with the SUT can be done via test interfaces in the software or by using existing
interfaces already provided by the software. The availability of these interfaces (APIs) is an
important part of the design for testability. The level of intrusion can be quite high in this case.
Automated tests use interfaces which might not be used by end users of the system at all (test
interfaces) or interfaces may be used in a different context than in the real world. On the other
hand, it is very easy and inexpensive to perform automated tests via interfaces (API). Testing the
SUT via test interfaces can be a solid approach as long as the potential risk is understood.

A high level of intrusion can show failures during testing that are not evident in real world use conditions. If
this causes failures with the automated tests, the confidence in the test automation solution can drop
dramatically. Developers may require that failures identified by automated testing should first be reproduced
manually, if possible, in order to assist with the analysis.

Framework Component Testing
Much like any software development project, the automated framework components need to be individually
tested and verified. This may include functional and non-functional (performance, resource utilization,
usability, etc.) testing.

For example, components that provide object verification on GUI systems need to be tested for a wide
range of object classes in order to establish that object verification functions correctly. Likewise, error logs
and reports should produce accurate information regarding the status of automation and SUT behavior.

Examples of non-functional testing may include understanding framework performance degradation,
utilization of system resources that may indicate problems such as memory leaks. Interoperability of
components within and/or outside of the framework.
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7.2 Verifying the Automated Test Suite

Automated test suites need to be tested for completeness, consistency, and correct behavior. Different
kinds of verification checks can be applied to make sure the automated test suite is up and running at any
given time, or to determine that it is fit for use.

There are a number of steps that can be taken to verify the automated test suite.  These include:
 Executing test scripts with known passes and failures
 Checking the test suite
 Verifying new tests that focus on new features of the framework
 Considering the repeatability of tests
 Checking that there are enough verification points in the automated test suite.

Each of these is explained in more detail below.

Executing test scripts with known passes and failures
When known passing test cases fail, it is immediately clear that something is fundamentally wrong and
should be fixed as soon as possible. Conversely, when a test suite passes even though it should have
failed, it is necessary to identify the test case that did not function correctly. It is important to verify the
correct generation of log files, performance data, setup and teardown of the test case/script. It is also helpful
to execute a few tests from the different test types and levels (functional tests, performance tests,
component tests, etc.).

Checking the test suite
Check the test suite for completeness (test cases all have expected results, test data present), and correct
version with the framework and SUT.

Verifying new tests that focus on new features of the framework
The first time a new feature of the TAS is actually being used in test cases, it should be verified and
monitored closely to ensure the feature is working correctly.

Considering repeatability of tests
When repeating tests, the result/verdict of the test should always be the same. Having test cases in the test
set which do not give a reliable result (e.g., race conditions) could be moved from the active automated test
suite and analyzed separately to find the root cause. Otherwise time will be spent repeatedly on these test
runs to analyze the problem.

Intermittent failures need to be analyzed. The problem can be in the test case itself or in the framework (or
it might even be an issue in the SUT). Log file analysis (of the test case, framework and SUT) can identify
the root cause of the problem. Debugging may also be necessary. Support from the test analyst, software
developer, and domain expert may be needed to find the root cause.
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Checking that there are enough verification points in the automated test suite and/or test cases
It must be possible to verify that the automated test suite has been executed and has achieved the expected
results.  Evidence must be provided to ensure the test suite and/or test cases have run as expected.  This
evidence can include logging at the start and end of each test case, recording the test execution status for
each completed test case, verification that the post conditions have been achieved, etc.
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8 Continuous Improvement - 150 mins.

Keywords
maintenance

Learning Objectives for Continuous Improvement

8.1 Options for Improving Test Automation
ALTA-E-8.1.1    (K4) Analyze the technical aspects of a deployed test automation solution and provide

recommendations for improvement
8.2 Adapting Test Automation to environment and SUT changes
ALTA-E-8.2.1    (K4) Analyze the automated testware, including test environment components,  tools and

supporting function libraries, in order to understand where consolidation and updates
should be made following a given set of test environment or SUT changes
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8.1 Options for Improving Test Automation
In addition to the on-going maintenance tasks necessary to keep the TAS synchronised with the SUT, there
are typically many opportunities to improve the TAS. TAS improvements may be undertaken to achieve a
range of benefits including greater efficiency (further reducing manual intervention), better ease of use,
additional capabilities and improved support for testing activities. The decision as to how the TAS is
improved will be influenced by the benefits that will add the most value to a project.

Specific areas of a TAS that may be considered for improvement include scripting, verification, architecture,
pre- and post-processing, documentation, and tool support. These are described in more detail below.

Scripting
Scripting approaches vary from the simple structured approach to data-driven approaches and on to the
more sophisticated keyword-driven approaches, as described in Section 3.2.2. It may be appropriate to
upgrade the current TAS scripting approach for all new automated tests. The approach may be retrofitted
to all the existing automated tests or at least those that involve the greatest amount of maintenance effort.

Rather than change the scripting approach altogether, TAS improvements may focus on the implementation
of scripts. For example:

 Assess test case/step/procedure overlap in an effort to consolidate automated tests.
Test cases containing similar sequences of actions should not implement these steps multiple
times. These steps should be made into a function and added to a library, so that they can be
reused. These library functions can then be used by different test cases. This increases the
maintainability of the testware. When test steps are not identical but similar, parameterization may
be necessary.
Note: this is a typical approach in keyword-driven testing.

 Establish an error recovery process for the TAS and SUT.
When an error occurs during the execution of test cases, the TAS should be able to recover from
this error condition in order to be able to continue with the next test case. When an error occurs in
the SUT, the TAS needs to be able to perform necessary recovery actions on the SUT (e.g., a
reboot of the complete SUT).

 Evaluate wait mechanisms to ensure the best type is being used.
There are three common wait mechanisms:

1. Hard-coded waits (wait a certain number of milliseconds) can be a root cause for many test
automation problems.

2. Dynamic waiting by polling, e.g., checking for a certain state change or action has taken
place, is much more flexible and efficient:
 It waits only the needed time and no test time is wasted
 When for some reason the process takes longer, the polling will just wait until the

condition is true. Remember to include a timeout mechanism, otherwise the test may
wait forever in case of a problem.

3. An even better way is to subscribe to the event mechanism of the SUT. This is much more
reliable than the other two options, but the test scripting language needs to support event
subscription and the SUT needs to offer these events to the test application. Remember to
include a timeout mechanism, otherwise the test may wait forever in case of a problem
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 Treat the testware as software.
Development and maintenance of testware is just a form of software development. As such good
coding practices (e.g., using coding guidelines, static analysis, code reviews) should be applied. It
may even be a good idea to use software developers (instead of test engineers) to develop certain
parts of the testware (e.g., libraries).

 Evaluate existing scripts for revision/elimination.
Several scripts may be troublesome (e.g., failing now and then, or high maintenance costs), and it
may be wise to redesign these scripts. Other test scripts can be removed from the suite because
they are no longer adding any value.

Test Execution
When an automated regression test suite is not finished overnight, this should not come as a surprise.
When the testing takes too long, it may be necessary to test concurrently on different systems, but this is
not always possible. When expensive systems (targets) are used for testing, it can be a constraint that all
testing must be done on a single target. It may be necessary to split the regression test suite into multiple
parts, each executing in a defined period of time (e.g., in a single night). Further analysis of the automated
test coverage may reveal duplication.  Removing duplication can reduce execution time and can yield
further efficiencies. Further analysis of the automated test coverage may reveal duplication.  Removing
duplication can reduce execution time and can yield further efficiencies.

Verification
Before creating new verification functions, adopt a set of standard verification methods for use by all
automated tests. This will avoid the re-implementation of verification actions across multiple tests. When
verification methods are not identical but similar, the use of parameterization will aid in allowing a function
to be used across multiple types of objects.

Architecture
It may be necessary to change the architecture in order to support improvements of the testability of the
SUT.  These changes may be made in the architecture of the SUT and/or in the architecture of the
automation. This can provide a major improvement in the test automation, but may require significant
changes and investment in the SUT/TAS. For example, if the SUT is going to be changed to provide APIs
for testing then the TAS should also be refactored accordingly. Adding these kinds of features at a later
stage can be quite expensive; it is much better to think of this at the start of automation (and in the early
stages of the development of the SUT – see Section 2.3 Design for Testability and Automation).

Pre- and post-processing
Provide standard setup and teardown tasks. These are also known as pre-processing (setup) and post-
processing (teardown). This saves the tasks being implemented repeatedly for each automated test not
only reducing maintenance costs but also reducing the effort required to implement new automated tests.

Documentation
This covers all forms of documentation from script documentation (what the scripts do, how they should be
used, etc.), user documentation for the TAS, and the reports and logs produced by the TAS.

TAS features
Add additional TAS features and functions such as detailed reporting, logs, integration to other systems,
etc. Only add new features when these will indeed be used. Adding unused features only increases
complexity and decreases reliability and maintainability.
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TAS updates and upgrades
By updating or upgrading to new versions of the TAS, new functions may become available that can be
used by the test cases (or failures may be corrected). The risk is that updating the framework (by either
upgrading the existing test tools or introducing new ones) might have a negative impact on existing test
cases. Test the new version of the test tool by running sample tests before rolling out the new version. The
sample tests should be representative of the automated tests of different applications, different test types
and, where appropriate, different environments.

8.2 Planning the Implementation of Test Automation Improvement
Changes to an existing TAS require careful planning and investigation. Much effort has been expended in
creating a robust TAS consisting of a TAF and component libraries. Any change, no matter how trivial, can
have wide ranging impact on the reliability and performance of the TAS.

Identify changes in the test environment components
Evaluate what changes and improvement need to be made. Do these require changes to the testing
software, customized function libraries, OS? Each of these has an impact on how the TAS performs. The
overall goal is to ensure automated tests continue to run in an efficient manner. Changes should be made
incrementally so that the impact on the TAS can be measured through a limited run of test scripts. Once it
is found that no detrimental effect exists, changes can be fully implemented. A full regression run is the final
step toward validating that the change did not adversely affect the automated scripts. During execution of
these regression scripts, errors may be found. Identifying the root cause of these errors (through reporting,
logs, data analysis, etc.) will provide a means to ensure that they are not resulting from the automation
improvement activity.

Increase efficiency and effectiveness of core TAS function libraries
As a TAS matures, new ways are discovered to perform tasks more efficiently. These new techniques
(which include optimizing code in functions, using newer operating system libraries, etc.) need to be
incorporated into the core function libraries that are used by the current project and all projects.

Target multiple functions that act on the same control type for consolidation
A large part of what occurs during an automated test run is the interrogation of controls in the GUI. This
interrogation serves to provide information about that control (e.g., visible/not visible, enabled/not enabled,
size and dimensions, data, etc.). With this information, an automated test can select an item from a
dropdown list, enter data into a field, read a value from a field, etc. There are several functions that can act
upon controls to elicit this information. Some functions are extremely specialized, while others are more
general in nature. For example, there may be a specific function that works only on dropdown lists.
Alternatively, there may be a function (or one may be created and used within the TAS) that works with
several functions by specifying a function as one of its parameters. Therefore, a TAE may use several
functions that can be consolidated into fewer functions, achieving the same results and minimizing the
maintenance requirement.

Refactor the TAA to accommodate changes in the SUT
Through the life of a TAS, changes will need to be made to accommodate changes in the SUT. As the SUT
evolves and matures, the underlying TAA will have to evolve as well to ensure that the capability is there
to support the SUT. Care must be taken when extending features so that they are not implemented in a
bolt-on manner, but instead are analyzed and changed at the architectural level of the automated solution.
This will ensure that as new SUT functionality requires additional scripts, compatible components will be in
place to accommodate these new automated tests.
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Naming conventions and standardization
As changes are introduced, naming conventions for new automation code and function libraries need to be
consistent with previously defined standards (see Section 4.3.2 Scope and Approach).

Evaluation of existing scripts for SUT revision/elimination
The process of change and improvement also includes an assessment of existing scripts, their use and
continued value. For example, if certain tests are complex and time consuming to run, decomposing them
into several smaller tests can be more viable and efficient. Targeting tests that run infrequently or not at all
for elimination will pare down the complexity of the TAS and bring greater clarity to what needs to be
maintained.



Certified Tester
Advanced Level Syllabus – Test Automation Engineer

International
Software Testing

Qualifications Board

Version 2016 Page 79 of 84 21 Oct 2016
© International Software Testing Qualifications Board

9 References

9.1 Standards

Standards for test automation include but are not limited to:
 The Testing and Test Control Notation (TTCN-3) by ETSI (European Telecommunication

Standards Institute) and ITU (International Telecommunication Union) consisting of
 ES 201 873-1: TTCN-3 Core Language
 ES 201 873-2: TTCN-3 Tabular Presentation Format (TFT)
 ES 201 873-3: TTCN-3 Graphical Presentation Format (GFT)
 ES 201 873-4: TTCN-3 Operational Semantics
 ES 201 873-5: TTCN-3 Runtime Interface (TRI)
 ES 201 873-6: TTCN-3 Control Interface (TCI)
 ES 201 873-7: Using ASN.1 with TTCN-3
 ES 201 873-8: Using IDL with TTCN-3
 ES 201 873-9: Using XML with TTCN-3
 ES 201 873-10: TTCN-3 Documentation
 ES 202 781: Extensions: Configuration and Deployment Support
 ES 202 782: Extensions: TTCN-3 Performance and Real-Time Testing
 ES 202 784: Extensions: Advanced Parameterization
 ES 202 785: Extensions: Behaviour Types
 ES 202 786: Extensions: Support of interfaces with continuous signals
 ES 202 789: Extensions: Extended TRI

 The Automatic Test Markup Language (ATML) by IEEE (Institute of Electrical and Electronics
Engineers) consisting of
 IEEE Std 1671.1: Test Description
 IEEE Std 1671.2: Instrument Description
 IEEE Std 1671.3: UUT Description
 IEEE Std 1671.4: Test Configuration Description
 IEEE Std 1671.5: Test Adaptor Description
 IEEE Std 1671.6: Test Station Description
 IEEE Std 1641: Signal and Test Definition
 IEEE Std 1636.1: Test Results

 The ISO/IEC/IEEE 29119-3:
 The UML Testing Profile (UTP) by OMG (Object Management Group) specifying test specification

concepts for
 Test Architecture
 Test Data
 Test Behavior
 Test Logging
 Test Management
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9.2 ISTQB Documents

Identifier Reference
ISTQB-AL-TM ISTQB Certified Tester, Advanced Level Syllabus, Test Manager, Version 2012,

available from [ISTQB-Web]
ISTQB-AL-TTA ISTQB Certified Tester, Advanced Level Syllabus, Technical Test Analyst, Version

2012, available from [ISTQB-Web]
ISTQB-EL-CEP ISTQB Advanced Level Certification Extension, available from [ISTQB-Web]
ISTQB-EL-
Modules

ISTQB Advanced Level Modules Overview, Version 1.2, August 23, 2013,
available from [ISTQB-Web]

ISTQB-EL-TM ISTQB Advanced Level – Test Management syllabus, Version 2011, available from
[ISTQB-Web]

ISTQB-FL ISTQB Foundation Level Syllabus, Version 2011, available from [ISTQB-Web]
ISTQB-Glossary ISTQB Glossary of terms, Version 2.4, July 4, 2014, available from [ISTQB-Web]

9.3 Trademarks

The following registered trademarks and service marks are used in this document:

ISTQB® is a registered trademark of the International Software Testing Qualifications Board

9.4 Books

Identifier Book Reference
[Baker08] Paul Baker, Zhen Ru Dai, Jens Grabowski and Ina Schieferdecker,

“Model-Driven Testing: Using the UML Testing Profile”, Springer 2008
edition, ISBN-10: 3540725628, ISBN-13: 978-3540725626

[Dustin09] Efriede Dustin, Thom Garrett, Bernie Gauf, “Implementing Automated
Software Testing: how to save time and lower costs while raising
quality”, Addison-Wesley, 2009, ISBN 0-321-58051-6

[Dustin99] Efriede Dustin, Jeff Rashka, John Paul, “Automated Software Testing:
introduction, management, and performance”, Addison-Wesley, 1999,
ISBN-10: 0201432870, ISBN-13: 9780201432879

[Fewster&Graham12] Mark Fewster, Dorothy Graham, “Experiences of Test Automation:
Case Studies of Software Test Automation”, Addison-Wesley, 2012

[Fewster&Graham99] Mark Fewster, Dorothy Graham, “Software Test Automation: Effective
use of test execution tools”, ACM Press Books, 1999, ISBN-10:
0201331403, ISBN-13: 9780201331400

[McCaffrey06] James D. McCaffrey, “.NET Test Automation Recipes: A Problem-
Solution Approach”, APRESS, 2006 ISBN-13:978-1-59059-663-3,
ISBN-10:1-59059-663-3



Certified Tester
Advanced Level Syllabus – Test Automation Engineer

International
Software Testing

Qualifications Board

Version 2016 Page 81 of 84 21 Oct 2016
© International Software Testing Qualifications Board

[Mosley02] Daniel J. Mosley, Bruce A. Posey, “Just Enough Software Test
Automation”, Prentice Hall, 2002, ISBN-10: 0130084689, ISBN-13:
9780130084682

[Willcock11] Colin Willcock, Thomas Deiß, Stephan Tobies and Stefan Keil, “An
Introduction to TTCN-3” Wiley, 2nd edition 2011, ISBN-
10: 0470663065, ISBN-13: 978-0470663066

9.5 Web References

Identifier Reference
ISTQB-Web Web site of the International Software Testing Qualifications Board.  Refer to this

website for the latest ISTQB Glossary and syllabi. www.istqb.org



Certified Tester
Advanced Level Syllabus – Test Automation Engineer

International
Software Testing

Qualifications Board

Version 2016 Page 82 of 84 21 Oct 2016
© International Software Testing Qualifications Board

10 Notice to Training Providers

10.1 Training Times
Each chapter in the syllabus is assigned an allocated time in minutes. The purpose of this is both to give
guidance on the relative proportion of time to be allocated to each section of an accredited course and to
give an approximate minimum time for the teaching of each section.

Training providers may spend more time than is indicated and candidates may spend more time again in
reading and research. A course curriculum does not have to follow the same order as the syllabus. It is not
required to conduct the course in one continuous block of time.

The table below provides a guideline for teaching and exercise times for each chapter (all times are shown
in minutes).

Chapter Minutes
0. Introduction 0
1. Introduction and Objectives for Test Automation 30
2. Preparing for Test Automation 165
3. The Generic Test Automation Architecture 270
4. Deployment Risks and Contingencies 150
5.Test Automation Reporting and Metrics 165
6. Transitioning Manual Testing to an Automated Environment 120
7. Verifying the TAS 120
8. Continuous Improvement 150
Total: 1170

The total course times in days, based on an average of seven hours per working day, is:
2 days, 5 hours, 30 minutes.

10.2 Practical Exercises in the Workplace
There are no exercises defined which may be performed in the workplace.

10.3 Rules for e-Learning
All parts of this syllabus are considered appropriate for implementation as e-learning.
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