
International Software Testing Qualifications Board

Certified Tester

Foundation Level Specialist Syllabus
Performance Testing

Version 2018

Provided by

American Software Testing Qualifications Board

and

German Testing Board

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 2 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Copyright Notice

This document may be copied in its entirety, or extracts made, if the source is
acknowledged.

Copyright © International Software Testing Qualifications Board (hereinafter called
ISTQB®).

Performance Testing Working Group:

Graham Bath
Rex Black
Alexander Podelko
Andrew Pollner
Randy Rice

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 3 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Revision History

Version Date Remarks

Alpha V04 13 December 2016 Version for NYC Meeting
Alpha V05 18 December 2016 After NYC Meeting
Alpha V06 23 December 2016 Restructure Ch 4

Renumbering and adjusting LOs as agreed
in NYC

Alpha V07 31 December 2016 Add author comments
Alpha V08 12 February 2017 Pre-Alpha version
Alpha V09 16 April 2017 Pre-Alpha version
Alpha Review V10 28 June 2017 For the Alpha Review
V2017v1 27 November 2017 For Alpha Review
V2017v2 15 December 2017 Alpha updates
V2017v3 15 January 2018 Technical edit
V2017v4 23 January 2018 Glossary review
V2018 b1 1 March 2018 Beta Candidate for ISTQB
V2018 b2 17 May 2018 Beta Release for ISTQB
V2018 b3 25th August 2018 Beta review comments incorporated for

release version
Version 2018 9 December 2018 ISTQB GA Release

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 4 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Table of Contents

Revision History .. 3

Table of Contents ... 4

Acknowledgements .. 6

0. Introduction to this Syllabus ... 7

0.1 Purpose of this Document .. 7

0.2 The Certified Foundation Level Performance Testing 7

0.3 Business Outcomes ... 8

0.4 Examinable Learning Objectives .. 8

0.5 Recommended Training Times .. 9

0.6 Entry Requirements .. 9

0.7 Sources of Information ... 9

1. Basic Concepts – 60 mins. .. 10

1.1 Principles of Performance Testing.. 10

1.2 Types of Performance Testing ... 12

1.3 Testing Types in Performance Testing ... 13

1.3.1 Static testing.. 13

1.3.2 Dynamic testing ... 13

1.4 The Concept of Load Generation ... 14

1.5 Common Performance Efficiency Failure Modes and Their Causes 15

2. Performance Measurement Fundamentals - 55 mins. 17

2.1 Typical Metrics Collected in Performance Testing...................................... 17

2.1.1 Why Performance Metrics are Needed ... 17

2.1.2 Collecting Performance Measurements and Metrics 18

2.1.3 Selecting Performance Metrics ... 19

2.2 Aggregating Results from Performance Testing ... 20

2.3 Key Sources of Performance Metrics ... 20

2.4 Typical Results of a Performance Test ... 21

3. Performance Testing in the Software Lifecycle – 195 mins. 23

3.1 Principal Performance Testing Activities .. 23

3.2 Categories of Performance Risks for Different Architectures 25

3.3 Performance Risks Across the Software Development Lifecycle 27

3.4 Performance Testing Activities ... 29

4. Performance Testing Tasks– 475 mins. .. 32

4.1 Planning ... 32

4.1.1 Deriving Performance Test Objectives .. 32

4.1.2 The Performance Test Plan .. 33

4.1.3 Communicating about Performance Testing 37

4.2 Analysis, Design and Implementation .. 38

4.2.1 Typical Communication Protocols ... 38

4.2.2 Transactions.. 39

4.2.3 Identifying Operational Profiles ... 40

4.2.4 Creating Load Profiles ... 42

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 5 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

4.2.5 Analyzing Throughput and Concurrency ... 44

4.2.6 Basic Structure of a Performance Test Script 45

4.2.7 Implementing Performance Test Scripts ... 46

4.2.8 Preparing for Performance Test Execution ... 47

4.3 Execution ... 50

4.4 Analyzing Results and Reporting ... 51

5. Tools – 90 mins. .. 55

5.1 Tool Support ... 55

5.2 Tool Suitability .. 56

6. References .. 58

6.1 Standards ... 58

6.2 ISTQB Documents ... 58

6.3 Books ... 58

7. Index.. 59

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 6 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Acknowledgements

This document was produced by the American Software Testing Qualifications Board
(ASTQB) and the German Testing Board (GTB):

Graham Bath (GTB, Working Group co-chair)
Rex Black
Alexander Podelko (CMG)
Andrew Pollner (ASTQB, Working Group co-chair)
Randy Rice

The core team thanks the review team for their suggestions and input. ASTQB would
like to acknowledge and thank the Computer Measurement Group (CMG) for their
contributions in the development of this syllabus.

The following persons participated in the reviewing, commenting or balloting of this
syllabus or its predecessors:

Dani Almog Marek Majernik Péter Sótér
Sebastian Chece Stefan Massonet Michael Stahl
Todd DeCapua Judy McKay Jan Stiller
Wim Decoutere Gary Mogyorodi Federico Toledo
Frans Dijkman Joern Muenzel Andrea Szabó
Jiangru Fu Petr Neugebauer Yaron Tsubery
Matthias Hamburg Ingvar Nordström Stephanie Ulrich
Ágota Horváth Meile Posthuma Mohit Verma
Mieke Jungebload Michaël Pilaeten Armin Wachter
Beata Karpinska Filip Rechtoris Huaiwen Yang
Gábor Ladányi Adam Roman Ting Yang
Kai Lepler Dirk Schweier
Ine Lutterman Marcus Seyfert

This document was formally released by the ISTQB on December 9th, 2018.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 7 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

0. Introduction to this Syllabus

0.1 Purpose of this Document

This syllabus forms the basis for the qualification of Performance Testing at the
Foundation Level. The ASTQB® and GTB® provide this syllabus as follows:

1. To National Boards, to translate into their local language and to accredit training
providers. National Boards may adapt the syllabus to their particular language
needs and modify the references to adapt to their local publications.

2. To Exam Boards, to derive examination questions in their local language
adapted to the learning objectives for each syllabus.

3. To training providers, to produce courseware and determine appropriate
teaching methods.

4. To certification candidates, to prepare for the exam (as part of a training course
or independently).

5. To the international software and systems engineering community, to advance
the profession of software and systems testing, and as a basis for books and
articles.

The ASTQB and GTB may allow other entities to use this syllabus for other purposes,
provided they seek and obtain prior written permission.

0.2 The Certified Foundation Level Performance Testing

The Foundation Level qualification is aimed at anyone involved in software testing who
wishes to broaden their knowledge of performance testing or anyone who wishes to
start a specialist career in performance testing. The qualification is also aimed at
anyone involved in performance engineering who wishes to gain a better
understanding of performance testing.

The syllabus considers the following principal aspects of performance testing:

 Technical aspects
 Method-based aspects
 Organizational aspects

Information about performance testing described in the ISTQB® Advanced Level
Technical Test Analyst syllabus [ISTQB_ALTTA_SYL] is consistent with and is
developed by this syllabus.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 8 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

0.3 Business Outcomes

This section lists the Business Outcomes expected of a candidate who has achieved
the Foundation Level Performance Testing certification.

PTFL-1 Understand the basic concepts of performance efficiency and performance

testing
PTFL-2 Define performance risks, goals, and requirements to meet stakeholder

needs and expectations
PTFL-3 Understand performance metrics and how to collect them
PTFL-4 Develop a performance test plan for achieving stated goals and

requirements
PTFL-5 Conceptually design, implement, and execute basic performance tests
PTFL-6 Analyze the results of a performance test and state implications to various

stakeholders
PTFL-7 Explain the process, rationale, results, and implications of performance

testing to various stakeholders
PTFL-8 Understand categories and uses for performance tools and criteria for their

selection
PTFL-9 Determine how performance testing activities align with the software

lifecycle

0.4 Examinable Learning Objectives

The Learning Objectives support the Business Outcomes and are used to create the
examination for achieving the Foundation Level Performance Testing Certification.
Learning objectives are allocated to a Cognitive level of knowledge (K-Level).

A K-level, or Cognitive level, is used to classify learning objectives according to the
revised taxonomy from Bloom [Anderson01]. ISTQB® uses this taxonomy to design its
syllabi examinations.

This syllabus considers four different K-levels (K1 to K4):

K-
Level

Keyword Description

1 Remember The candidate should remember or recognize a term or a
concept.

2 Understand The candidate should select an explanation for a statement
related to the question topic.

3 Apply The candidate should select the correct application of a
concept or technique and apply it to a given context.

4 Analyze The candidate can separate information related to a
procedure or technique into its constituent parts for better

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 9 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

understanding and can distinguish between facts and
inferences.

In general, all parts of this syllabus are examinable at a K1 level. That is, the candidate
will recognize, remember and recall a term or concept. The learning objectives at K2,
K3 and K4 levels are shown at the beginning of the pertinent chapter.

0.5 Recommended Training Times

A minimum training time has been defined for each learning objective in this syllabus.
The total time for each chapter is indicated in the chapter heading.

Training providers should note that other ISTQB syllabi apply a “standard time”
approach which allocates fixed times according to the K-Level. The Performance
Testing syllabus does not strictly apply this scheme. As a result, training providers are
given a more flexible and realistic indication of minimum training times for each learning
objective.

0.6 Entry Requirements

The Foundation Level Core certificate shall be obtained before taking the Foundation
Level Performance Testing certification exam.

0.7 Sources of Information

Terms used in the syllabus are defined in the ISTQB’s Glossary of Terms used in
Software Testing [ISTQB_GLOSSARY].

Section 6 contains a list of recommended books and articles on performance testing.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 10 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

1. Basic Concepts – 60 mins.

Keywords

Capacity testing concurrency testing efficiency, endurance testing, load generation,
load testing, performance testing, scalability testing, spike testing, stress testing

Learning Objectives for Basic Concepts

1.1 Principles and Concepts
PTFL-1.1.1 (K2) Understand the principles of performance testing

1.2 Types of Performance Testing
PTFL-1.2.1 (K2) Understand the different types of performance testing

1.3 Testing Types in Performance Testing
PTFL-1.3.1 (K1) Recall testing types in performance testing

1.4 The Concept of Load Generation
PTFL-1.4.1 (K2) Understand the concept of load generation

1.5 Common Failures in Performance Testing and Their Causes
PTFL-1.5.1 (K2) Give examples of common failure modes of performance testing and

their causes

1.1 Principles of Performance Testing

Performance efficiency (or simply “performance”) is an essential part of providing a
“good experience” for users when they use their applications on a variety of fixed
and mobile platforms. Performance testing plays a critical role in establishing
acceptable quality levels for the end user and is often closely integrated with other
disciplines such as usability engineering and performance engineering.

Additionally, evaluation of functional suitability, usability and other quality
characteristics under conditions of load, such as during execution of a performance
test, may reveal load-specific issues which impact those characteristics.

Performance testing is not limited to the web-based domain where the end user is
the focus. It is also relevant to different application domains with a variety of system
architectures, such as classic client-server, distributed and embedded.
Technically, performance efficiency is categorized in the ISO 25010 [ISO25000]
Product Quality Model as a non-functional quality characteristic with the three sub-
characteristics described below. Proper focus and prioritization depends on the risks

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 11 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

assessed and the needs of the various stakeholders. Test results analysis may
identify other areas of risk that need to be addressed.

Time Behavior: Generally the evaluation of time behavior is the most common
performance testing objective. This aspect of performance testing examines the
ability of a component or system to respond to user or system inputs within a
specified time and under specified conditions. Measurements of time behavior may
vary from the “end-to-end” time taken by the system to responding to user input, to
the number of CPU cycles required by a software component to execute a particular
task.

Resource Utilization: If the availability of system resources is identified as a risk,
the utilization of those resources (e.g., the allocation of limited RAM) may be
investigated by conducting specific performance tests.

Capacity: If issues of system behavior at the required capacity limits of the system
(e.g., numbers of users or volumes of data) is identified as a risk, performance tests
may be conducted to evaluate the suitability of the system architecture.

Performance testing often takes the form of experimentation, which enables
measurement and analysis of specific system parameters to take place. These may
be conducted iteratively in support of system analysis, design and implementation to
enable architectural decisions to be made and to help shape stakeholder expectations.

The following performance testing principles are particularly relevant.

 Tests must be aligned to the defined expectations of different stakeholder
groups, in particular users, system designers and operations staff.

 The tests must be reproducible. Statistically identical results (within a specified
tolerance) must be obtained by repeating the tests on an unchanged system.

 The tests must yield results that are both understandable and can be readily
compared to stakeholder expectations.

 The tests can be conducted, where resources allow, either on complete or
partial systems or test environments that are representative of the production
system.

 The tests must be practically affordable and executable within the timeframe set
by the project.

Books by [Molyneaux09] and [Microsoft07] provide a solid background to the principles
and practical aspects of performance testing.

All three of the above quality sub-characteristics will impact the ability of the system
under test (SUT) to scale.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 12 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

1.2 Types of Performance Testing

Different types of performance testing can be defined. Each of these may be
applicable to a given project, depending on the objectives of the test.

Performance Testing

Performance testing is an umbrella term including any kind of testing focused on
performance (responsiveness) of the system or component under different volumes of
load.

Load Testing

Load testing focuses on the ability of a system to handle increasing levels of anticipated
realistic loads resulting from transaction requests generated by controlled numbers of
concurrent users or processes.

Stress Testing

Stress testing focuses on the ability of a system or component to handle peak loads
that are at or beyond the limits of its anticipated or specified workloads. Stress
testing is also used to evaluate a system’s ability to handle reduced availability of
resources such as accessible computing capacity, available bandwidth, and memory.

Scalability Testing

Scalability testing focuses on the ability of a system to meet future efficiency
requirements which may be beyond those currently required. The objective of these
tests is to determine the system’s ability to grow (e.g., with more users, larger amounts
of data stored) without violating the currently specified performance requirements or
failing. Once the limits of scalability are known, threshold values can be set and
monitored in production to provide a warning of problems which may be about to arise..
In addition the production environment may be adjusted with appropriate amounts of
hardware.

Spike Testing

Spike testing focuses on the ability of a system to respond correctly to sudden bursts
of peak loads and return afterwards to a steady state.

Endurance Testing

Endurance testing focuses on the stability of the system over a time frame specific to
the system’s operational context. This type of testing verifies that there are no resource
capacity problems (e.g., memory leaks, database connections, thread pools) that may
eventually degrade performance and/or cause failures at breaking points.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 13 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Concurrency Testing

Concurrency testing focuses on the impact of situations where specific actions occur
simultaneously (e.g., when large numbers of users log in at the same time).
Concurrency issues are notoriously difficult to find and reproduce, particularly when
the problem occurs in an environment where testing has little or no control, such as
production.

Capacity Testing

Capacity testing determines how many users and/or transactions a given system will
support and still meet the stated performance objectives. These objectives may also
be stated with regard to the data volumes resulting from the transactions.

1.3 Testing Types in Performance Testing

The principal testing types used in performance testing include static testing and
dynamic testing.

1.3.1 Static testing

Static testing activities are often more important for performance testing than for
functional suitability testing. This is because so many critical performance defects are
introduced in the architecture and design of the system. These defects can be
introduced by misunderstandings or a lack of knowledge by the designers and
architects. These defects can also be introduced because the requirements did not
adequately capture the response time, throughput, or resource utilization targets, the
expected load and usage of the system, or the constraints.

Static testing activities for performance can include:

 Reviews of requirements with focus on performance aspects and risks

 Reviews of database schemas, entity-relationship diagrams, metadata, stored
procedures and queries

 Reviews of the system and network architecture

 Reviews of critical segments of the system code (e.g., complex algorithms)

1.3.2 Dynamic testing

As the system is built, dynamic performance testing should start as soon as possible.
Opportunities for dynamic performance testing include:

 During unit testing, including using profiling information to determine potential
bottlenecks and dynamic analysis to evaluate resource utilization

 During component integration testing, across key use cases and workflows,
especially when integrating different use case features or integrating with the
“backbone” structure of a workflow

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 14 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

 During system testing of overall end-to-end behaviors under various load
conditions

 During system integration testing, especially for data flows and workflows
across key inter-system interfaces. In system integration testing is not
uncommon for the “user” to be another system or machine (e.g. inputs from
sensor inputs and other systems)

 During acceptance testing, to build user, customer, and operator confidence in
the proper performance of the system and to fine tune the system under real
world conditions (but generally not to find performance defects in the system)

In higher test levels such as system testing and system integration testing, the use of
realistic environments, data, and loads are critical for accurate results (see Chapter 4).
In Agile and other iterative-incremental lifecycles, teams should incorporate static and
dynamic performance testing into early iterations rather than waiting for final iterations
to address performance risks.

If custom or new hardware is part of the system, early dynamic performance tests can
be performed using simulators. However, it is good practice to start testing on the
actual hardware as soon as possible, as simulators often do not adequately capture
resource constraints and performance-related behaviors.

1.4 The Concept of Load Generation

In order to carry out the various types of performance testing described in Section 1.2,
representative system loads must be modeled, generated and submitted to the system
under test. Loads are comparable to the data inputs used for functional test cases, but
differ in the following principal ways:

 A performance test load must represent many user inputs, not just one
 A performance test load may require dedicated hardware and tools for

generation
 Generation of a performance test load is dependent on the absence of any

functional defects in the system under test which may impact test execution

The efficient and reliable generation of a specified load is a key success factor when
conducting performance tests. There are different options for load generation.

Load Generation via the User Interface
This may be an adequate approach if only a small number of users are to be
represented and if the required numbers of software clients are available from which
to enter required inputs. This approach may also be used in conjunction with functional
test execution tools, but may rapidly become impractical as the numbers of users to
be simulated increases. The stability of the user interface (UI) also represents a critical
dependency. Frequent changes can impact the repeatability of performance tests and

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 15 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

may significantly affect the maintenance costs. Testing through the UI may be the most
representative approach for end-to-end tests.

Load Generation using Crowds
This approach depends on the availability of a large number of testers who will
represent real users. In crowd testing, the testers are organized such that the desired
load can be generated. This may be a suitable method for testing applications that are
reachable from anywhere in the world (e.g., web-based), and may involve the users
generating a load from a wide range of different device types and configurations.
Although this approach may enable very large numbers of users to be utilized, the load
generated will not be as reproducible and precise as other options and is more complex
to organize.

Load Generation via the Application Programming Interface (API)
This approach is similar to using the UI for data entry, but uses the application’s API
instead of the UI to simulate user interaction with the system under test. The approach
is therefore less sensitive to changes (e.g., delays) in the UI and allows the
transactions to be processed in the same way as they would if entered directly by a
user via the UI. Dedicated scripts may be created which repeatedly call specific API
routines and enable more users to be simulated compared to using UI inputs.

Load Generation using Captured Communication Protocols
This approach involves capturing user interaction with the system under test at the
communications protocol level and then replaying these scripts to simulate potentially
very large numbers of users in a repeatable and reliable manner. This tool-based
approach is described in Sections 4.2.6 and 4.2.7.

1.5 Common Performance Efficiency Failure Modes and Their Causes

While there certainly are many different performance failure modes that can be found
during dynamic testing, the following are some examples of common failures (including
system crashes), along with typical causes:

Slow response under all load levels
In some cases, response is unacceptable regardless of load. This may be caused by
underlying performance issues, including, but not limited to, bad database design or
implementation, network latency, and other background loads. Such issues can be
identified during functional and usability testing, not just performance testing, so test
analysts should keep an eye open for them and report them.

Slow response under moderate-to-heavy load levels
In some cases, response degrades unacceptably with moderate-to-heavy load, even
when such loads are entirely within normal, expected, allowed ranges. Underlying
defects include saturation of one or more resources and varying background loads.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 16 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Degraded response over time
In some cases, response degrades gradually or severely over time. Underlying causes
include memory leaks, disk fragmentation, increasing network load over time, growth
of the file repository, and unexpected database growth.

Inadequate or graceless error handling under heavy or over-limit load
In some cases, response time is acceptable but error handling degrades at high and
beyond-limit load levels. Underlying defects include insufficient resource pools,
undersized queues and stacks, and too rapid time-out settings.

Specific examples of the general types of failures listed above include:

 A web-based application that provides information about a company’s services
does not respond to user requests within seven seconds (a general industry rule
of thumb). The performance efficiency of the system cannot be achieved under
specific load conditions.

 A system crashes or is unable to respond to user inputs when subjected to a
sudden large number of user requests (e.g., ticket sales for a major sporting
event). The capacity of the system to handle this number of users is inadequate.

 System response is significantly degraded when users submit requests for large
amounts of data (e.g., a large and important report is posted on a web site for
download). The capacity of the system to handle the generated data volumes is
insufficient.

 Batch processing is unable to complete before online processing is needed. The
execution time of the batch processes is insufficient for the time period allowed.

 A real-time system runs out of RAM when parallel processes generate large
demands for dynamic memory which cannot be released in time. The RAM is
not dimensioned adequately, or requests for RAM are not adequately prioritized.

 A real-time system component A which supplies inputs to real-time system
component B is unable to calculate updates at the required rate. The overall
system fails to respond in time and may fail. Code modules in component A
must be evaluated and modified (“performance profiling”) to ensure that the
required update rates can be achieved.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 17 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

2. Performance Measurement Fundamentals - 55 mins.

Keywords

measurement, metric

Learning Objectives for Performance Measurement Fundamentals

2.1 Typical Metrics Collected in Performance Testing
PTFL-2.1.1 (K2) Understand the typical metrics collected in performance testing

2.2 Aggregating Results from Performance Testing
PTFL-2.2.1 (K2) Explain why results from performance testing are aggregated

2.3 Key Sources of Performance Metrics
PTFL-2.3.1 (K2) Understand the key sources of performance metrics

2.4 Typical Results of a Performance Test
PTFL-2.4.1 (K1) Recall the typical results of a performance test

2.1 Typical Metrics Collected in Performance Testing

2.1.1 Why Performance Metrics are Needed

Accurate measurements and the metrics which are derived from those measurements
are essential for defining the goals of performance testing and for evaluating the results
of performance testing. Performance testing should not be undertaken without first
understanding which measurements and metrics are needed. The following project
risks apply if this advice is ignored:

 It is unknown if the levels of performance are acceptable to meet operational
objectives

 The performance requirements are not defined in measurable terms
 It may not be possible to identify trends that may predict lower levels of

performance
 The actual results of a performance test cannot be evaluated by comparing

them to a baseline set of performance measures that define acceptable and/or
unacceptable performance

 Performance test results are evaluated based on the subjective opinion of one
or more people

 The results provided by a performance test tool are not understood

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 18 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

2.1.2 Collecting Performance Measurements and Metrics

As with any form of measurement, it is possible to obtain and express metrics in precise
ways. Therefore, any of the metrics and measurements described in this section can
and should be defined to be meaningful in a particular context. This is a matter of
performing initial tests and learning which metrics need to be further refined and which
need to be added.

For example, the metric of response time likely will be in any set of performance
metrics. However, to be meaningful and actionable, the response time metric will need
to be further defined in terms of time of day, number of concurrent users, the amount
of data being processed and so forth.

The metrics collected in a specific performance test will vary based on the

 business context (business processes, customer and user behavior, and
stakeholder expectations),

 operational context (technology and how it is used)
 test objectives

For example, the metrics chosen for the performance testing of an international e-
commerce website will differ from those chosen for the performance testing of an
embedded system used to control medical device functionality.

A common way to categorize performance measurements and metrics is to consider
the technical environment, business environment, or operational environment in which
the assessment of performance is needed.

The categories of measurements and metrics included below are the ones commonly
obtained from performance testing.

Technical Environment
Performance metrics will vary by the type of the technical environment, as shown in
the following list:

 Web-based

 Mobile

 Internet-of-Things (IoT)

 Desktop client devices

 Server-side processing

 Mainframe

 Databases

 Networks
 The nature of software running in the environment (e.g., embedded)

The metrics include the following:

 Response time (e.g., per transaction, per concurrent user, page load times)

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 19 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

 Resource utilization (e.g., CPU, memory, network bandwidth, network latency,
available disk space, I/O rate, idle and busy threads)

 Throughput rate of key transaction (i.e., the number of transactions that can
be processed in a given period of time)

 Batch processing time (e.g., wait times, throughput times, data base response
times, completion times)

 Numbers of errors impacting performance

 Completion time (e.g., for creating, reading, updating, and deleting data)
 Background load on shared resources (especially in virtualized environments)
 Software metrics (e.g., code complexity)

Business Environment
From the business or functional perspective, performance metrics may include the
following:

 Business process efficiency (e.g., the speed of performing an overall business
process including normal, alternate and exceptional use case flows)

 Throughput of data, transactions, and other units of work performed (e.g.,
orders processed per hour, data rows added per minute)

 Service Level Agreement (SLA) compliance or violation rates (e.g., SLA
violations per unit of time)

 Scope of usage (e.g., percentage of global or national users conducting tasks
at a given time)

 Concurrency of usage (e.g., the number of users concurrently performing a
task)

 Timing of usage (e.g., the number of orders processed during peak load
times)

Operational Environment
The operational aspect of performance testing focuses on tasks that are generally not
considered to be user-facing in nature. These include the following:

 Operational processes (e.g., the time required for environment start-up,
backups, shutdown and resumption times)

 System restoration (e.g., the time required to restore data from a backup)

 Alerts and warnings (e.g., the time needed for the system to issue an alert or
warning)

2.1.3 Selecting Performance Metrics

It should be noted that collecting more metrics than required is not necessarily a good
thing. Each metric chosen requires a means for consistent collection and reporting. It
is important to define an obtainable set of metrics that support the performance test
objectives.

For example, the Goal-Question-Metric (GQM) approach is a helpful way to align
metrics with performance goals. The idea is to first establish the goals, then ask
questions to know when the goals have been achieved. Metrics are associated with

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 20 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

each question to ensure the answer to the question is measurable. (See Section 4.3
of the Expert Level Syllabus – Improving the Testing Process
[ISTQB_ELTM_ITP_SYL] for a more complete description of the GQM approach.) It
should be noted that the GQM approach doesn’t always fit the performance testing
process. For example, some metrics represent a system’s health and are not directly
linked to goals.

It is important to realize that after the definition and capture of initial measurements
further measurements and metrics may be needed to understand true performance
levels and to determine where corrective actions may be needed.

2.2 Aggregating Results from Performance Testing

The purpose of aggregating performance metrics is to be able to understand and
express them in a way that accurately conveys the total picture of system performance.
When performance metrics are viewed at only the detailed level, drawing the right
conclusion may be difficult—especially for business stakeholders.

For many stakeholders, the main concern is that the response time of a system, web
site, or other test object is within acceptable limits.

Once deeper understanding of the performance metrics has been achieved, the
metrics can be aggregated so that:

 Business and project stakeholders can see the “big picture” status of system
performance

 Performance trends can be identified
 Performance metrics can be reported in an understandable way

2.3 Key Sources of Performance Metrics

System performance should be no more than minimally impacted by the metrics
collection effort (known as the “probe effect”). In addition, the volume, accuracy and
speed with which performance metrics must be collected makes tool usage a
requirement. While the combined use of tools is not uncommon, it can introduce
redundancy in the usage of test tools and other problems (see Section 4.4).

There are three key sources of performance metrics:

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 21 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Performance Test Tools
All performance test tools provide measurements and metrics as the result of a test.
Tools may vary in the number of metrics shown, the way in which the metrics are
shown, and the ability for the user to customize the metrics to a particular situation
(see also Section 5.1).

Some tools collect and display performance metrics in text format, while more robust
tools collect and display performance metrics graphically in a dashboard format. Many
tools offer the ability to export metrics to facilitate test evaluation and reporting.

Performance Monitoring Tools
Performance monitoring tools are often employed to supplement the reporting
capabilities of performance test tools (see also Section 5.1). In addition, monitoring
tools may be used to monitor system performance on an ongoing basis and to alert
system administrators to lowered levels of performance and higher levels of system
errors and alerts. These tools may also be used to detect and notify in the event of
suspicious behavior (such as denial of service attacks and distributed denial of Service
attacks).

Log Analysis Tools
There are tools that scan server logs and compile metrics from them. Some of these
tools can create charts to provide a graphical view of the data.

Errors, alerts and warnings are normally recorded in server logs. These include:

 High resource usage, such as high CPU utilization, high levels of disk storage
consumed, and insufficient bandwidth

 Memory errors and warnings, such as memory exhaustion
 Deadlocks and multi-threading problems, especially when performing database

operations
 Database errors, such as SQL exceptions and SQL timeouts

2.4 Typical Results of a Performance Test

In functional testing, particularly when verifying specified functional requirements or
functional elements of user stories, the expected results usually can be defined clearly
and the test results interpreted to determine if the test passed or failed. For example,
a monthly sales report shows either a correct or an incorrect total.

Whereas tests that verify functional suitability often benefit from well-defined test
oracles, performance testing often lacks this source of information. Not only are the
stakeholders notoriously bad at articulating performance requirements, many business
analysts and product owners are bad at eliciting such requirements. Testers often
receive limited guidance to define the expected test results.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 22 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

When evaluating performance test results, it is important to look at the results closely.
Initial raw results can be misleading with performance failures being hidden beneath
apparently good overall results. For example, resource utilization may be well under
75% for all key potential bottleneck resources, but the throughput or response time of
key transactions or use cases are an order-of-magnitude too slow.

The specific results to evaluate vary depending on the tests being run, and often
include those discussed in Section 2.1.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 23 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

3. Performance Testing in the Software Lifecycle – 195 mins.

Keywords

metric, risk, software development lifecycle, test log

Learning Objectives

3.1 Principal Performance Testing Activities
PTFL-3.1.1 (K2) Understand the principal performance testing activities

3.2 Performance Risks for Different Architectures
PTFL-3.2.1 (K2) Explain typical categories of performance risks for different

architectures

3.3 Performance Risks Across the Software Development Lifecycle
PTFL-3.3.1 (K4) Analyze performance risks for a given product across the software

development lifecycle

3.4 Performance Testing Activities
PTFL-3.4.1 (K4) Analyze a given project to determine the appropriate performance

testing activities for each phase of the software development lifecycle

3.1 Principal Performance Testing Activities

Performance testing is iterative in nature. Each test provides valuable insights into
application and system performance. The information gathered from one test is used
to correct or optimize application and system parameters. The next test iteration will
then show the results of modifications, and so on until test objectives are reached.

Performance testing activities align with the ISTQB test process [ISTQB_FL_SYL].

Test Planning
Test planning is particularly important for performance testing due to the need for the
allocation of test environments, test data, tools and human resources. In addition, this
is the activity in which the scope of performance testing is established.

During test planning, risk identification and risk analysis activities are completed and
relevant information is updated in any test planning documentation (e.g., test plan,
level test plan). Just as test planning is revisited and modified as needed, so are risks,
risk levels and risk status modified to reflect changes in risk conditions.

Test Monitoring and Control

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 24 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Control measures are defined to provide action plans should issues be encountered
which might impact performance efficiency, such as

 increasing the load generation capacity if the infrastructure does not generate
the desired loads as planned for particular performance tests

 changed, new or replaced hardware
 changes to network components
 changes to software implementation

The performance test objectives are evaluated to check for exit criteria achievement.

Test Analysis
Effective performance tests are based on an analysis of performance requirements,
test objectives, Service Level Agreements (SLA), IT architecture, process models and
other items that comprise the test basis. This activity may be supported by modeling
and analysis of system resource requirements and/or behavior using spreadsheets or
capacity planning tools.

Specific test conditions are identified such as load levels, timing conditions, and
transactions to be tested. The required type(s) of performance test (e.g., load, stress,
scalability) are then decided.

Test Design
Performance test cases are designed. These are generally created in modular form so
that they may be used as the building blocks of larger, more complex performance
tests (see section 4.2).

Test Implementation
In the implementation phase, performance test cases are ordered into performance
test procedures. These performance test procedures should reflect the steps normally
taken by the user and other functional activities that are to be covered during
performance testing.

A test implementation activity is establishing and/or resetting the test environment
before each test execution. Since performance testing is typically data-driven, a
process is needed to establish test data that is representative of actual production data
in volume and type so that production use can be simulated.

Test Execution
Test execution occurs when the performance test is conducted, often by using
performance test tools. Test results are evaluated to determine if the system’s
performance meets the requirements and other stated objectives. Any defects are
reported.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 25 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Test Completion
Performance test results are provided to the stakeholders (e.g., architects, managers,
product owners) in a test summary report. The results are expressed through metrics
which are often aggregated to simplify the meaning of the test results. Visual means
of reporting such as dashboards are often used to express performance test results in
ways that are easier to understand than text-based metrics.

Performance testing is often considered to be an ongoing activity in that it is performed
at multiple times and at all test levels (component, integration, system, system
integration and acceptance testing). At the close of a defined period of performance
testing, a point of test closure may be reached where designed tests, test tool assets
(test cases and test procedures), test data and other testware are archived or passed
on to other testers for later use during system maintenance activities.

3.2 Categories of Performance Risks for Different Architectures

As mentioned previously, application or system performance varies considerably
based on the architecture, application and host environment. While it is not possible to
provide a complete list of performance risks for all systems, the list below includes
some typical types of risks associated with particular architectures:

Single Computer Systems
These are systems or applications that runs entirely on one non-virtualized computer.
Performance can degrade due to

 excessive resource consumption including memory leaks, background activities
such as security software, slow storage subsystems (e.g., low-speed external
devices or disk fragmentation), and operating system mismanagement.

 inefficient implementation of algorithms which do not make use of available
resources (e.g., main memory) and as a result execute slower than required.

Multi-tier Systems
These are systems of systems that run on multiple servers, each of which performs a
specific set of tasks, such as database server, application server, and presentation
server. Each server is, of course, a computer and subject to the risks given earlier. In
addition, performance can degrade due to poor or non-scalable database design,
network bottlenecks, and inadequate bandwidth or capacity on any single server.

Distributed Systems
These are systems of systems, similar to a multi-tier architecture, but the various
servers may change dynamically, such as an e-commerce system that accesses
different inventory databases depending on the geographic location of the person
placing the order. In addition to the risks associated with multi-tier architectures, this
architecture can experience performance problems due to critical workflows or
dataflows to, from, or through unreliable or unpredictable remote servers, especially

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 26 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

when such servers suffer periodic connection problems or intermittent periods of
intense load.

Virtualized Systems
These are systems where the physical hardware hosts multiple virtual computers.
These virtual machines may host single-computer systems and applications as well as
servers that are part of a multi-tier or distributed architecture. Performance risks that
arise specifically from virtualization include excessive load on the hardware across all
the virtual machines or improper configuration of the host virtual machine resulting in
inadequate resources.

Dynamic/Cloud-based Systems
These are systems that offer the ability to scale on demand, increasing capacity as the
level of load increases. These systems are typically distributed and virtualized multi-
tier systems, albeit with self-scaling features designed specifically to mitigate some of
the performance risks associated with those architectures. However, there are risks
associated with failures to properly configure these features during initial setup or
subsequent updates.

Client –Server Systems
These are systems running on a client that communicate via a user interface with a
single server, multi-tier server, or distributed server. Since there is code running on
the client, the single computer risks apply to that code, while the server-side issues
mentioned above apply as well. Further, performance risks exist due to connection
speed and reliability issues, network congestion at the client connection point (e.g.,
public Wi-Fi), and potential problems due to firewalls, packet inspection and server
load balancing.

Mobile Applications
This are applications running on a smartphone, tablet, or other mobile device. Such
applications are subject to the risks mentioned for client-server and browser-based
(web apps) applications. In addition, performance issues can arise due to the limited
and variable resources and connectivity available on the mobile device (which can be
affected by location, battery life, charge state, available memory on the device and
temperature). For those applications that use device sensors or radios such as
accelerometers or Bluetooth, slow dataflows from those sources could create
problems. Finally, mobile applications often have heavy interactions with other local
mobile apps and remote web services, any of which can potentially become a
performance efficiency bottleneck.

Embedded Real-time Systems
These are systems that work within or even control everyday things such as cars (e.g.,
entertainment systems and intelligent braking systems), elevators, traffic signals,
Heating, Ventilation and Air Conditioning (HVAC) systems, and more. These systems
often have many of the risks of mobile devices, including (increasingly) connectivity-

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 27 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

related issues since these devices are connected to the Internet. However the
diminished performance of a mobile video game is usually not a safety hazard for the
user, while such slowdowns in a vehicle braking system could prove catastrophic.

Mainframe Applications
These are applications—in many cases decades-old applications—supporting often
mission-critical business functions in a data center, sometimes via batch processing.
Most are quite predictable and fast when used as originally designed, but many of
these are now accessible via APIs, web services, or through their database, which can
result in unexpected loads that affect throughput of established applications.

Note that any particular application or system may incorporate two or more of the
architectures listed above, which means that all relevant risks will apply to that
application or system. In fact, given the Internet of Things and the explosion of mobile
applications—two areas where extreme levels of interaction and connection is the
rule—it is possible that all architectures are present in some form in an application, and
thus all risks can apply.

While architecture is clearly an important technical decision with a profound impact on
performance risks, other technical decisions also influence and create risks. For
example, memory leaks are more common with languages that allow direct heap
memory management, such as C and C++, and performance issues are different for
relational versus non-relational databases. Such decisions extend all the way down to
the design of individual functions or methods (e.g., the choice of a recursive as
opposed to an iterative algorithm). As a tester, the ability to know about or even
influence such decisions will vary, depending on the roles and responsibilities of testers
within the organization and software development lifecycle.

3.3 Performance Risks Across the Software Development Lifecycle

The process of analyzing risks to the quality of a software product in general is
discussed in various ISTQB syllabi (e.g., see [ISTQB_FL_SYL] and
[ISTQB_ALTM_SYL]). You can also find discussions of specific risks and
considerations associated with particular quality characteristics (e.g.,
[ISTQB_UT_SYL]), and from a business or technical perspective (e.g., see
[ISTQB_ALTA_SYL] and [ISTQB_ALTTA_SYL], respectively). In this section, the
focus is on performance-related risks to product quality, including ways that the
process, the participants, and the considerations change.

For performance-related risks to the quality of the product, the process is:

1. Identify risks to product quality, focusing on characteristics such as time behavior,

resource utilization, and capacity.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 28 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

2. Assess the identified risks, ensuring that the relevant architecture categories (see
Section 3.2) are addressed. Evaluate the overall level of risk for each identified
risk in terms of likelihood and impact using clearly defined criteria.

3. Take appropriate risk mitigation actions for each risk item based on the nature of
the risk item and the level of risk.

4. Manage risks on an ongoing basis to ensure that the risks are adequately
mitigated prior to release.

As with quality risk analysis in general, the participants in this process should include
both business and technical stakeholders. For performance-related risk analysis the
business stakeholders must include those with a particular awareness of how
performance problems in production will actually affect customers, users, the business,
and other downstream stakeholders. Business stakeholders must appreciate that
intended usage, business-, societal-, or safety-criticality, potential financial and/or
reputational damage, civil or criminal legal liability and similar factors affect risk from a
business perspective, creating risks and influencing the impact of failures.

Further, the technical stakeholders must include those with a deep understanding of
the performance implications of relevant requirements, architecture, design, and
implementation decisions. Technical stakeholders must appreciate that architecture,
design, and implementation decisions affect performance risks from a technical
perspective, creating risks and influencing the likelihood of defects.

The specific risk analysis process chosen should have the appropriate level of formality
and rigor. For performance-related risks, it is especially important that the risk analysis
process be started early and is repeated regularly. In other words, the tester should
avoid relying entirely on performance testing conducted towards the end of the system
test level and system integration test level. Many projects, especially larger and more
complex systems of systems projects, have met with unfortunate surprises due to the
late discovery of performance defects which resulted from requirements, design,
architecture, and implementation decisions made early in the project. The emphasis
should therefore be on an iterative approach to performance risk identification,
assessment, mitigation, and management throughout the software development
lifecycle.

For example, if large volumes of data will be handled via a relational database, the
slow performance of many-to-many joins due to poor database design may only reveal
itself during dynamic testing with large-scale test datasets, such as those used during
system test. However, a careful technical review that includes experienced database
engineers can predict the problems prior to database implementation. After such a
review, in an iterative approach, risks are identified and assessed again.

In addition, risk mitigation and management must span and influence the entire
software development process, not just dynamic testing. For example, when critical
performance-related decisions such as the expected number of transactions or

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 29 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

simultaneous users cannot be specified early in the project, it is important that design
and architecture decisions allow for highly variable scalability (e.g., on-demand cloud-
based computing resources). This enables early risk mitigation decisions to be made.

Good performance engineering can help project teams avoid the late discovery of
critical performance defects during higher test levels, such as system integration
testing or user acceptance testing. Performance defects found at a late stage in the
project can be extremely costly and may even lead to the cancellation of entire projects.

As with any type of quality risk, performance-related risks can never be avoided
completely, i.e., some risk of performance-related production failure will always exist.
Therefore, the risk management process must include providing a realistic and specific
evaluation of the residual level of risk to the business and technical stakeholders
involved in the process. For example, simply saying, “Yes, it’s still possible for
customers to experience long delays during check out,” is not helpful, as it gives no
idea of what amount of risk mitigation has occurred or of the level of risk that remains.
Instead, providing clear insight into the percentage of customers likely to experience
delays equal to or exceeding certain thresholds will help people understand the status.

3.4 Performance Testing Activities

Performance testing activities will be organized and performed differently, depending
on the type of software development lifecycle in use.

Sequential Development Models
The ideal practice of performance testing in sequential development models is to
include performance criteria as a part of the acceptance criteria which are defined at
the outset of a project. Reinforcing the lifecycle view of testing, performance testing
activities should be conducted throughout the software development lifecycle. As the
project progresses, each successive performance test activity should be based on
items defined in the prior activities as shown below.

 Concept – Verify that system performance goals are defined as acceptance
criteria for the project.

 Requirements – Verify that performance requirements are defined and
represent stakeholder needs correctly.

 Analysis and Design – Verify that the system design reflects the performance
requirements.

 Coding/Implementation – Verify that the code is efficient and reflects the
requirements and design in terms of performance.

 Component Testing – Conduct component level performance testing.
 Component Integration Testing – Conduct performance testing at the

component integration level.
 System Testing – Conduct performance testing at the system level, which

includes hardware, software, procedures and data that are representative of

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 30 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

the production environment. System interfaces may be simulated provided
that they give a true representation of performance.

 System Integration Testing– Conduct performance testing with the entire
system which is representative of the production environment.

 Acceptance Testing – Validate that system performance meets the originally
stated user needs and acceptance criteria.

Iterative and Incremental Development Models
In these development models, such as Agile, performance testing is also seen as an
iterative and incremental activity (see [ISTQB_FL_AT]).Performance testing can occur
as part of the first iteration, or as an iteration dedicated entirely to performance testing.
However, with these lifecycle models, the execution of performance testing may be
performed by a separate team tasked with performance testing.

Continuous Integration (CI) is commonly performed in iterative and incremental
software development lifecycles, which facilitates a highly automated execution of
tests. The most common objective of testing in CI is to perform regression testing and
ensure each build is stable. Performance testing can be part of the automated tests
performed in CI if the tests are designed in such a way as to be executed at a build
level. However, unlike functional automated tests, there are additional concerns such
as the following:

 The setup of the performance test environment – This often requires a test
environment that is available on demand, such as a cloud-based performance
test environment.

 Determining which performance tests to automate in CI – Due to the short
timeframe available for CI tests, CI performance tests may be a subset of
more extensive performance tests that are conducted by a specialist team at
other times during an iteration.

 Creating the performance tests for CI – The main objective of performance
tests as part of CI is to ensure a change does not negatively impact
performance. Depending on the changes made for any given build, new
performance tests may be required.

 Executing performance tests on portions of an application or system – This
often requires the tools and test environments to be capable of rapid
performance testing including the ability to select subsets of applicable tests.

Performance testing in the iterative and incremental software development lifecycles
can also have its own lifecycle activities:

 Release Planning – In this activity, performance testing is considered from the
perspective of all iterations in a release, from the first iteration to the final
iteration. Performance risks are identified and assessed, and mitigation
measures planned. This often includes planning of any final performance
testing before the release of the application.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 31 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

 Iteration Planning – In the context of each iteration, performance testing may
be performed within the iteration and as each iteration is completed.
Performance risks are assessed in more detail for each user story.

 User Story Creation – User stories often form the basis of performance
requirements in Agile methodologies, with the specific performance criteria
described in the associated acceptance criteria. These are referred to as “non-
functional” user stories.

 Design of performance tests –performance requirements and criteria which
are described in particular user stories are used for the design of tests (see
section 4.2)

 Coding/Implementation – During coding, performance testing may be
performed at a component level. An example of this would be the tuning of
algorithms for optimum performance efficiency.

 Testing/Evaluation – While testing is typically performed in close proximity to
development activities, performance testing may be performed as a separate
activity, depending on the scope and objectives of performance testing during
the iteration. For example, if the goal of performance testing is to test the
performance of the iteration as a completed set of user stories, a wider scope
of performance testing will be needed than that seen in performance testing a
single user story. This may be scheduled in a dedicated iteration for
performance testing.

 Delivery – Since delivery will introduce the application to the production
environment, performance will need to be monitored to determine if the
application achieves the desired levels of performance in actual usage.

Commercial Off-the-Shelf (COTS) and other Supplier/Acquirer Models
Many organizations do not develop applications and systems themselves, but instead
are in the position of acquiring software from vendor sources or from open-source
projects. In such supplier/acquirer models, performance is an important consideration
that requires testing from both the supplier (vendor/developer) and acquirer (customer)
perspectives.

Regardless of the source of the application, it is often the responsibility of the customer
to validate that the performance meets their requirements. In the case of customized
vendor-developed software, performance requirements and associated acceptance
criteria which should be specified as part of the contract between the vendor and
customer. In the case of COTS applications, the customer has sole responsibility to
test the performance of the product in a realistic test environment prior to deployment.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 32 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

4. Performance Testing Tasks– 475 mins.

Keywords

concurrency, load profile, load generation, operational profile, ramp-down, ramp-up,
system of systems, system throughput, test plan, think time, virtual user

Learning Objectives

4.1 Planning
PTFL-4.1.1 (K4) Derive performance test objectives from relevant information
PTFL-4.1.2 (K4) Outline a performance test plan which considers the performance

objectives for a given project
PTFL-4.1.3 (K4) Create a presentation that enables various stakeholders to

understand the rationale behind the planned performance testing

4.2 Analysis, Design and Implementation
PTFL-4.2.1 (K2) Give examples of typical protocols encountered in performance

testing
PTFL-4.2.2 (K2) Understand the concept of transactions in performance testing
PTFL-4.2.3 (K4) Analyze operational profiles for system usage
PTFL-4.2.4 (K4) Create load profiles derived from operational profiles for given

performance objectives
PTFL-4.2.5 (K4) Analyze throughput and concurrency when developing performance

tests
PTFL-4.2.6 (K2) Understand the basic structure of a performance test script
PTFL-4.2.7 (K3) Implement performance test scripts consistent with the plan and

load profiles
PTFL-4.2.8 (K2) Understand the activities involved in preparing for performance test

execution

4.3 Execution
PTFL-4.3.1 (K2) Understand the principal activities in running performance test

scripts

4.4 Analyzing Results and Reporting
PTFL-4.4.1 (K4) Analyze and report performance test results and implications

4.1 Planning

4.1.1 Deriving Performance Test Objectives

Stakeholders may include users and people with a business or technical background.
They may have different objectives relating to performance testing. Stakeholders set

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 33 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

the objectives, the terminology to be used and the criteria for determining whether the
objective has been achieved

Objectives for performance tests relate back to these different types of stakeholders.
It is a good practice to distinguish between user-based and technical objectives. User-
based objectives focus primarily on end-user satisfaction and business goals.
Generally, users are less concerned about feature types or how a product gets
delivered. They just want to be able to do what they need to do.

Technical objectives, on the other hand, focus on operational aspects and providing
answers to questions regarding a system’s ability to scale, or under what conditions
degraded performance may become apparent.

Key objectives of performance testing include identifying potential risks, finding
opportunities for improvement, and identifying necessary changes.

When gathering information from the various stakeholders, the following questions
should be answered:

 What transactions will be executed in the performance test and what average
response time is expected?

 What system metrics are to be captured (e.g., memory usage, network
throughput) and what values are expected?

 What performance improvements are expected from these tests compared to
previous test cycles?

4.1.2 The Performance Test Plan

The Performance Test Plan (PTP) is a document created prior to any performance
testing occurring. The PTP should be referred to by the Test Plan (see
[ISTQB_FL_SYL]) which also includes relevant scheduling information. It continues to
be updated once performance testing begins.

The following information should be supplied in a PTP:

Objective
The PTP objective describes the goals, strategies and methods for the performance
test. It enables a quantifiable answer to the central question of the adequacy and the
readiness of the system to perform under load.

Test Objectives
Overall test objectives for performance efficiency to be achieved by the System Under
Test (SUT) are listed for each type of stakeholder (see Section 4.1.1)

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 34 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

System Overview
A brief description of the SUT will provide the context for the measurement of the
performance test parameters. The overview should include a high-level description of
the functionality being tested under load.

Types of Performance Testing to be Conducted
The types of performance testing to be conducted are listed (see Section 1.2) along
with a description of the purpose of each type.

Acceptance Criteria
Performance testing is intended to determine the responsiveness, throughput,
reliability and/or scalability of the system under a given workload. In general, response
time is a user concern, throughput is a business concern, and resource utilization is a
system concern. Acceptance criteria should be set for all relevant measures and
related back to the following as applicable:

 Overall performance test objectives
 Service Level Agreements (SLAs)
 Baseline values – A baseline is a set of metrics used to compare current and

previously achieved performance measurements. This enables particular
performance improvements to be demonstrated and/or the achievement of
test acceptance criteria to be confirmed. It may be necessary to first create the
baseline using sanitized data from a database, where possible.

Test Data
Test data includes a broad range of data that needs to be specified for a performance
test. This data can include the following:

 User account data (e.g., user accounts available for simultaneous log in)
 User input data (e.g., the data a user would enter into the application in order

to perform a business process)
 Database (e.g., the pre-populated database that is populated with data for use

in testing)

The test data creation process should address the following aspects:
 data extraction from production data
 importing data into the SUT
 creation of new data
 creation of backups that can be used to restore the data when new cycles of

testing are performed
 data masking or anonymizing. This practice is used on production data that

contains personally identifiable information, and is mandatory under General
Data Protection Regulations (GDPR). However, in performance testing, data
masking adds risk to the performance tests as it may not have the same data
characteristics as seen in real-world use.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 35 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

System Configuration
The system configuration section of the PTP includes the following technical
information:

 A description of the specific system architecture, including servers (e.g., web,
database, load balancer)

 Definition of multiple tiers
 Specific details of computing hardware (e.g., CPU cores, RAM, Solid State

Disks (SSD), Hard Drive Disks (HDD)) including versions
 Specific details of software (e.g., applications, operating systems, databases,

services used to support the enterprise) including versions
 External systems that operates with the SUT and their configuration and

version (e.g., Ecommerce system with integration to NetSuite)
 SUT build / version identifier

Test Environment
The test environment is often a separate environment that mimics production, but at a
smaller scale. This section of the PTP should include how the results from the
performance testing will be extrapolated to apply to the larger production environment.
With some systems, the production environment becomes the only viable option for
testing, but in this case the specific risks of this type of testing must be discussed.

Testing tools sometimes reside outside the test environment itself and may require
special access rights in order to interact with the system components. This is a
consideration for the test environment and configuration.

Performance tests may also be conducted with a component part of the system that is
capable of operating without other components. This is often cheaper than testing with
the whole system and can be conducted as soon as the component is developed.

Test Tools
This section includes a description of which test tools (and versions) will be used in
scripting, executing and monitoring the performance tests (see Chapter 5). This list
normally includes:

 Tool(s) used to simulate user transactions
 Tools to provide load from multiple points within the system architecture

(points of presence)
 Tools to monitor system performance, including those described above under

system configuration

Profiles
Operational profiles provide a repeatable step-by-step flow through the application for
a particular usage of the system. Aggregating these operational profiles results in a
load profile (commonly referred to as a scenario). See Section 4.2.3 for more
information on profiles.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 36 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Relevant Metrics
A large number of measurements and metrics can be collected during a performance
test execution (see Chapter 2). However, taking too many measurements can make
analysis difficult as well as negatively impact the application’s actual performance. For
these reasons, it is important to identify the measurements and metrics that are most
relevant to accomplish the objectives of the performance test.

The following table, explained in more detail in Section 4.4, shows a typical set of
metrics for performance testing and monitoring. Test objectives for performance should
be defined for these metrics, where required, for the project:

Performance Metrics

Type Metric

Virtual User Status # Passed
Failed

Transaction Response
Time

Minimum
Maximum
Average
90% Percentile

Transactions Per Second # Passed / second
Failed / second
Total / second

Hits (e.g., on database or
web server)

Hits / second
 Minimum
 Maximum
 Average
 Total

Throughput Bits / second
 Minimum
 Maximum
 Average
 Total

HTTP Responses Per
Second

Responses / second
 Minimum
 Maximum
 Average
 Total
Response by HTTP
response codes

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 37 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Performance Monitoring

Type Metric

CPU usage

% of available CPU used

Memory usage % of available memory
used

Risks
Risks can include areas not measured as part of the performance testing as well as
limitations to the performance testing (e.g., external interfaces that cannot be
simulated, insufficient load, inability to monitor servers). Limitations of the test
environment may also produce risks (e.g., insufficient data, scaled down environment).
See Sections 3.2 and 3.3 for more risk types.

4.1.3 Communicating about Performance Testing

The tester must be capable of communicating to all stakeholders the rationale behind
the performance testing approach and the activities to be undertaken (as detailed in
the Performance Test Plan). The subjects to be addressed in this communication may
vary considerably between stakeholders depending on whether they have a “business
/ user-facing” interest or a more “technology / operations-facing” focus.

Stakeholders with a Business Focus
The following factors should be considered when communicating with stakeholders
with a business focus:

 Stakeholders with a business focus are less interested in the distinctions
between functional and non-functional quality characteristics.

 Technical issues concerning tooling, scripting and load generation are generally
of secondary interest.

 The connection between product risks and performance test objectives must be
clearly stated.

 Stakeholders must be made aware of the balance between the cost of planned
performance tests and how representative the performance testing results will
be, compared to production conditions.

 The repeatability of planned performance tests must be communicated. Will the
test be difficult to repeat or can it be repeated with a minimum of effort?

 Project risks must be communicated. These include constraints and
dependencies concerning the setup of the tests, infrastructure requirements
(e.g., hardware, tools, data, bandwidth, test environment, resources) and
dependencies on key staff.

 The high-level activities must be communicated (see Sections 4.2 and 4.3)
together with a broad plan containing costs, time schedule and milestones.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 38 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Stakeholders with a Technology Focus
The following factors must be considered when communicating with stakeholders with
a technology focus:

 The planned approach to generating required load profiles must be explained
and the expected involvement of technical stakeholders made clear.

 Detailed steps in the setup and execution of the performance tests must be
explained to show the relation of the testing to the architectural risks.

 Steps required to make performance tests repeatable must be communicated.
These may include organizational aspects (e.g., participation of key staff) as
well as technical issues.

 Where test environments are to be shared, the scheduling of performance tests
must be communicated to ensure the test results will not be adversely impacted.

 Mitigations of the potential impact on actual users if performance testing needs
to be executed in the production environment must be communicated and
accepted.

 Technical stakeholders must be clear about their tasks and when they are
scheduled.

4.2 Analysis, Design and Implementation

4.2.1 Typical Communication Protocols

Communication protocols define a set of communications rules between computers
and systems. Designing tests properly to target specific parts of the system requires
understanding protocols.

Communication protocols are often described by the Open Systems Interconnection
(OSI) model layers (see ISO/IEC 7498-1), although some protocols may fall outside of
this model. For performance testing, protocols from Layer 5 (Session Layer) to Layer
7 (Application Layer) are most commonly used for performance testing. Common
protocols include:

 Database - ODBC, JDBC, other vendor-specific protocols
 Web - HTTP, HTTPS, HTML
 Web Service - SOAP, REST

Generally speaking, the level of the OSI layer which is most in focus in performance
testing relates to the level of the architecture being tested. When testing some low-
level, embedded architecture for example, the lower numbered layers of the OSI model
will be mostly in focus.

Additional protocols used in performance testing include:

 Network - DNS, FTP, IMAP, LDAP, POP3, SMTP, Windows Sockets, CORBA
 Mobile - TruClient, SMP, MMS

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 39 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

 Remote Access - Citrix ICA, RTE
 SOA - MQSeries, JSON, WSCL

It is important to understand the overall system architecture because performance
tests can be executed on an individual system component (e.g., web server, database
server) or on a whole system via end-to-end testing. Traditional 2-tier applications built
with a client-server model specify the “client” as the GUI and primary user interface,
and the “server” as the backend database. These applications require the use of a
protocol such as ODBC to access the database. With the evolution of web-based
applications and multi-tiered architectures, many servers are involved in processing
information that is ultimately rendered to the user’s browser.

Depending on the part of the system that is targeted for testing, an understanding is
required of the appropriate protocol to be used. Therefore, if the need is to perform
end-to-end testing emulating user activity from the browser, a web protocol such as
HTTP/HTTPS will be employed. In this way, interaction with the GUI can be bypassed
and the tests can focus on the communication and activities of the backend servers.

4.2.2 Transactions

Transactions describe the set of activities performed by a system from the point of
initiation to when one or more processes (requests, operations, or operational
processes) have been completed. The response time of transactions can be
measured for the purpose of evaluating system performance. During a performance
test these measurements are used to identify any components that require correction
or optimization.

Simulated transactions can include think time to better reflect the timing of a real user
taking an action (e.g., pressing the “SEND” button). The transaction response time plus
the think time equals the elapsed time for that transaction.

The transaction response times collected during the performance test show how this
measurement changes under different loads imposed on the system. Analysis may
show no degradation under load while other measurements may show severe
degradation. By ramping up load and measuring the underlying transaction times, it is
possible to correlate the cause of degradation with the response times of one or more
transactions.

Transactions can also be nested so that individual and aggregate activities can be
measured. This can be helpful, for example, when understanding the performance
efficiency of an online ordering system. The tester may want to measure the discrete
steps in the order process (e.g., search for item, add item to cart, pay for item, confirm
order) as well as the order process as a whole. By nesting transactions, both sets of
information can be gathered in one test.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 40 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

4.2.3 Identifying Operational Profiles

Operational profiles specify distinct patterns of interaction with an application such as
from users or other system components. Multiple operational profiles may be specified
for a given application. They may be combined to create a desired load profile for
achieving particular performance test objectives (see Section 4.2.4).

The following principal steps for identifying operational profiles are described in this
section:

1. Identify the data to be gathered
2. Gather the data using one or more sources
3. Evaluate the data to construct the operational profiles

Identify Data
Where users interact with the system under test the following data is gathered or
estimated in order to model their operational profiles (i.e., how they interact with the
system):

 Different types of user personas and their roles (e.g., standard user, registered
member, administrator, user groups with specific privileges).

 Different generic tasks performed by those users/roles (e.g., browsing a web
site for information, searching a web site for a particular product, performing
role-specific activities). Note that these tasks are generally best modeled at a
high level of abstraction (e.g., at the level of business processes or major user
stories).

 Estimated numbers of users for each role/task per unit of time over a given time
period. This information will also be useful for subsequently building load
profiles (see Section 4.2.4).

Gather Data
The data mentioned above can be gathered from a number of different sources:

 Conducting interviews or workshops with stakeholders, such as product owners,
sales managers and (potential) end users. These discussions often reveal the
principal operational profiles of users and provide answers to the fundamental
question “Who is this application intended for”.

 Functional specifications and requirements (where available) are a valuable
source of information about intended usage patterns which can also help
identify user types and their operational profiles. Where functional specifications
are expressed as user stories, the standard format directly enables types of
users to be identified (i.e., As a <type of user>, I want <some capability> so that
<some benefit>). Similarly, UML Use Case diagrams and descriptions identify
the “actor” for the use case.

 Evaluating usage data and metrics gained from similar applications may support
identification of user types and provide some initial indications of the expected
numbers of users. Access to automatically monitored data (e.g., from a web
master’s administration tool) is recommended. This will include monitoring logs

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 41 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

and data taken from usage of the current operational system where an update
to that system is planned

 Monitoring the behavior of users when performing predefined tasks with the
application may give insights into the types of operational profiles to be modeled
for performance testing. Coordinating this task with any planned usability tests
(especially if a usability lab is available) is recommended.

Construct Operational Profiles
The following steps are followed for identifying and constructing operational profiles for
users:

 A top-down approach is taken. Relatively simple broad operational profiles are
initially created and only broken down further if this is needed to achieve
performance test objectives (see Section 4.1.1)

 Particular user profiles may be singled out as relevant for performance testing
if they involve tasks which are executed frequently, require critical (high risk) or
frequent transactions between different system components, or potentially
demand large volumes of data to be transferred.

 Operational profiles are reviewed and refined with the principal stakeholders
before being used for the creation of load profiles (see Section 4.2.4).

The system under test is not always subjected to loads imposed by the user.
Operational profiles may also be required for performance testing of the following types
of system (please note this list is not exhaustive):

Off-line Batch Processing Systems
The focus here lies principally on the throughput of the batch processing system (see
Section 4.2.5) and its ability to complete within a given time period. Operational profiles
focus on the types of processing which are demanded of the batch processes. For
example, the operational profiles for a stock trading system (which typically includes
online and batch-based transaction processing) may include those relating to payment
transactions, verifying credentials, and checking compliance of legal conditions for
particular types of stock transactions. Each of these operational profiles would result
in different paths being taken through the overall batch process for a stock. The steps
outlined above for identifying the operational profiles of online user-based systems can
also be applied in the batch processing context.

Systems of Systems
Components within a multi-system (which may also be embedded) environment
respond to different types of input from other systems or components. Depending on
the nature of the system under test, this may require modeling of several different
operational profiles to effectively represent the types of input provided by those
supplier systems. This may involve detailed analysis (e.g., of buffers and queues)
together with the system architects and based on system and interface specifications.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 42 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

4.2.4 Creating Load Profiles

A load profile specifies the activity which a component or system being tested may
experience in production. It consists of a designated number of instances that will
perform the actions of predefined operational profiles over a specified time period.
Where the instances are users, the term “virtual users” is commonly applied.

The principal information required to create a realistic and repeatable load profile is:

 The performance testing objective (e.g., to evaluate system behavior under
stress loads)

 Operational profiles which accurately represent individual usage patterns (see
Section 4.2.3)

 Known throughput and concurrency issues (see Section 4.2.5)
 The quantity and time distribution with which the operational profiles are to be

executed such that the SUT experiences the desired load. Typical examples
are:

o Ramp-ups: Steadily increasing load (e.g., add one virtual user per
minute)

o Ramp-downs: Steadily decreasing load
o Steps: Instantaneous changes in load (e.g., add 100 virtual users every

five minutes)
o Predefined distributions (e.g., volume mimics daily or seasonal business

cycles)

The following example shows the construction of a load profile with the objective of
generating stress conditions (at or above the expected maximum for a system to
handle) for the system under test.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 43 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Diagram 1: Example of constructing a “stress” load profile

At the top of the diagram a load profile is shown which consists of a step input of 100
virtual users. These users perform the activities defined by Operation Profile 1 over the
entire duration of the test. This is typical of many performance load profiles that
represent a background load.

The middle diagram shows a load profile that consists of a ramp-up to 220 virtual users
that is maintained for two hours before ramping down. Each virtual user performs
activities defined in Operational Profile 2.

The lower diagram shows the load profile that results from the combination of the two
described above. The system under test is subjected to a three-hour period of stress.
For further examples, refer to [Bath14].

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 44 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

4.2.5 Analyzing Throughput and Concurrency

It is important to understand different aspects of workload: throughput and
concurrency. To model operational and load profiles properly, both aspects should be
taken into consideration.

System Throughput
System throughput is a measure of the number of transactions of a given type that the
system processes in a unit of time. For example, the number of orders per hour or the
number of HTTP requests per second. System throughput should be distinguished
from network throughput, which is the amount of data moved over the network (Section
2.1).

System throughput defines load on the system. Unfortunately, quite often the number
of concurrent users is used to define the load for interactive systems instead of
throughput. This is partially true because that number is often easier to find, and
partially because it is the way load testing tools define load. Without defining
operational profiles – what each user is doing and how intensely (which also is
throughput for one user) – the number of users is not a good measure of load. For
example, if there are 500 users running short queries each minute, we have a
throughput of 30,000 queries per hour. If the same 500 users are running the same
queries, but one per hour, the throughput is 500 queries per hour. So there are the
same 500 users, but a 60x difference between loads and at least a 60x difference in
the hardware requirements for the system.

Workload modeling is usually done by considering the number of virtual users
(execution threads) and the think time (delays between user actions). However, system
throughput is also defined by processing time, and that time may increase as load
increases.

System throughput = [number of virtual users] / ([processing time] + [think time])

So when the processing time increases, throughput may significantly decrease even if
everything else stays the same.

System throughput is an important aspect when testing batch processing systems. In
this case, the throughput is typically measured according to the number of transactions
that can be accomplished within a given time frame (e.g., a nightly batch processing
window).

Concurrency
Concurrency is a measure of the number of simultaneous / parallel threads of
execution. For interactive systems, it may be a number of simultaneous / parallel users.
Concurrency is usually modeled in load testing tools by setting the number of virtual
users.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 45 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Concurrency is an important measure. It represents the number of parallel sessions,
each of which may use its own resources. Even if throughput is the same, the amount
of resources used may differ depending on concurrency. Typical test setups are closed
systems (from the queuing theory point of view), where the number of users in the
system is set (fixed population). If all users are waiting for the system’s response in a
closed system, no new users can arrive. Many public systems are open systems – new
users are arriving all the time even if all the current users are waiting for the system’s
response.

4.2.6 Basic Structure of a Performance Test Script

A performance test script should simulate a user or component activity that contributes
to the load on the system under test (which may be the whole system or one of its
components). It initiates requests to the server in a proper order and at a given pace.

The best way to create performance test scripts depends on the load generation
approach used (Section 4.1).

 The traditional way is to record communication between the client and the
system or component on the protocol level and then play it back after the script
has been parameterized and documented. The parameterization results in a
scalable and maintainable script, but the task of parameterization may be time
consuming.

 Recording at the GUI level typically involves capturing GUI actions of a single
client with a test execution tool and running that script with the load generation
tool to represent multiple clients.

 Programming may be done using protocol requests (e.g., HTTP requests), GUI
actions, or API calls. In the case of programming scripts, the exact sequence of
requests sent to and received from the real system must be determined, which
may be not trivial.

Usually a script is one or several sections of code (written in a generic programming
language with some extensions or in a specialized language) or an object, which may
be presented to a user by the tool in a GUI. In both cases the script will include server
requests creating load (e.g., HTTP requests) and some programming logic around
them specifying how exactly these requests would be invoked (e.g., in what order, at
what moment, with what parameters, what should be checked). The more
sophisticated the logic, the more need for using powerful programming languages.

Overall Structure
Often the script has an initialization section (where everything gets prepared for the
main part), main sections that may be executed multiple times, and a clean-up section
(where necessary steps are taken to finish the test properly).

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 46 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Data Collection
To collect response times, timers should be added to the script to measure how long
a request or a combination of requests takes. The timed requests should match a
meaningful unit of logical work–for example, a business transaction for adding an item
to an order or submitting an order.

It is important to understand what exactly is measured: in the case of protocol-level
scripts it is server and network response time only, while GUI scripts measure end-to-
end time (although what exactly is measured depends on the technology used).

Result Verification and Error Handling
An important part of the script is result verification and error handling. Even in the best
load testing tools, default error handling tends to be minimal (such as checking the
HTTP request return code), so it is recommended to add additional checks to verify
what the requests actually return. Also if any cleanup is required in case of an error, it
likely will need to be implemented manually. A good practice is to verify that the script
is doing what it is supposed to do using indirect methods–for example, checking the
database to verify that the proper information was added.

Scripts may include other logic specifying rules concerning when and how server
requests will be made. One example is setting synchronization points, which is done
by specifying that the script should wait for an event at that point before proceeding.
The synchronization points may be used to ensure that a specific action is invoked
concurrently or to coordinate work between several scripts.

Performance testing scripts are software, so creating a performance testing script is a
software development activity. It should include quality assurance and tests to verify
that the script works as expected with the whole range of input data.

4.2.7 Implementing Performance Test Scripts

Performance test scripts are implemented based on the PTP and the load profiles.
While technical details of implementation will differ depending on the approach and
tool(s) used, the overall process remains the same. A performance script is created
using an Integrated Development Environment (IDE) or script editor, to simulate a user
or component behavior. Usually the script is created to simulate a specific operational
profile (although it is often possible to combine several operational profiles in one script
with conditional statements).

As the sequence of requests is determined, the script may be recorded or programmed
depending on the approach. Recording usually ensures that it exactly simulates the
real system, while programming relies on knowledge of the proper request sequence.

If recording on the protocol level is used, an essential step after recording in most
cases is replacing all recorded internal identifiers that define context. These identifiers
must be made into variables that can be changed between runs with appropriate values

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 47 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

that are extracted from the request responses (e.g., a user identifier that is acquired at
login and must be supplied for all subsequent transactions). This is a part of script
parameterization, sometimes referred to as ‘correlation’. In that context the word
correlation has a different meaning than when used in statistics (where it means
relationship between two or more things). Advanced load testing tools may do some
correlation automatically, so it may be transparent in some cases—but in more
complex cases, manual correlation or adding new correlation rules may be required.
Incorrect correlation or lack of correlation is the main reason why recorded scripts fail
to playback.

Running multiple virtual users with the same user name and accessing the same set
of data (as usually happens during playback of a recorded script without any further
modification beyond necessary correlation) is an easy way to get misleading results.
The data could be completely cached (copied from disk to memory for faster access)
and results would be much better than in production (where such data may be read
from a disk). Using the same users and/or data can also cause concurrency issues
(e.g., if data is locked when a user is updating it) and results would be much worse
than in production as the software would wait for the lock to free before the next user
could lock the data for update.

So scripts and test harnesses should be parameterized (i.e., fixed or recorded data
should be replaced with values from a list of possible choices), so that each virtual user
uses a proper set of data. The term “proper” here means different enough to avoid
problems with caching and concurrency, which is specific for the system, data, and
test requirements. This further parameterization depends on the data in the system
and the way the system works with this data, so it usually is done manually, although
many tools provide assistance here.

There are cases where some data must be parameterized for the test to work more
than once–for example, when an order is created and the order name must be unique.
Unless the order’s name is parameterized, the test will fail as soon as it tries to create
an order with an existing (recorded) name.

To match operational profiles, think times should be inserted and/or adjusted (if
recorded) to generate a proper number of requests / throughput as discussed in
Section 4.2.5.

When scripts for separate operational profiles are created, they are combined into a
scenario implementing the whole load profile. The load profile controls how many
virtual users are started using each script, when, and with what parameters. The exact
implementation details depend on the specific load testing tool or harness.

4.2.8 Preparing for Performance Test Execution

The main activities for preparing to execute the performance tests include:

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 48 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

 Setting up the system under test
 Deploying the environment
 Setting up the load generation and monitoring tools and making sure that all the

necessary information will be collected

It is important to ensure the test environment is as close to the production environment
as possible. If this is not possible, then there must be a clear understanding of the
differences and how the test results will be projected on the production environment.
Ideally, the true production environment and data would be used, but testing in a
scaled-down environment still may help mitigate a number of performance risks.

It is important to remember that performance is a non-linear function of the
environment, so the further the environment is from production standard, the more
difficult it becomes to make accurate projections for production performance. The lack
of reliability of the projections and the increased risk level grow as the test system looks
less like production.

The most important parts of the test environment are data, hardware and software
configuration, and network configuration. The size and structure of the data could
affect load test results dramatically. Using a small sample set of data or a sample set
with a different data complexity for performance tests can give misleading results,
particularly when the production system will use a large set of data. It is difficult to
predict how much the data size affects performance before real testing is performed.
The closer the test data is to the production data in size and structure, the more reliable
the test results will be.

If data is generated or altered during the test, it may be necessary to restore the original
data before the next test cycle to ensure that the system is in the proper state.

If some parts of the system or some of the data is unavailable for performance tests
for whatever reason, a workaround should be implemented. For example, a stub may
be implemented to replace and emulate a third party component responsible for credit
card processing. That process is often referred to as “service virtualization” and there
are special tools available to assist with that process. The use of such tools are highly
recommended to isolate the system under test.

There are many ways to deploy environments. For example, options may include using
any of the following:

 Traditional internal (and external) test labs
 Cloud as an environment using Infrastructure as a Service (IaaS), when some

parts of the system or all of the system is deployed to the cloud
 Cloud as an environment using Software as a Service (SaaS), when vendors

provide the load testing service

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 49 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Depending on the specific goals and the systems to test, one test environment may be
preferred over another. For example,

 To test the effect of a performance improvement (performance optimization),
using an isolated lab environment may be a better option to see even small
variations introduced by the change.

 To load test the whole production environment end-to-end to make sure the
system will handle the load without any major issues, testing from the cloud or
a service may be more appropriate. (Note that this only works for SUTs that can
be reached from a cloud).

 To minimize costs when performance testing is limited in time, creating a test
environment in the cloud may be a more economical solution.

Whatever approach to deployment is used, both hardware and software should be
configured to meet the test objective and plan. If the environment matches production,
it should be configured in the same way. However, if there are differences, the
configuration may have to be adjusted to accommodate these differences. For
example, if test machines have less physical memory than the production machines,
software memory parameters (such as Java heap size) may need to be adjusted to
avoid memory paging.

Proper configuration / emulation of the network is important for global and mobile
systems. For global systems (i.e., one which has users or processing distributed world-
wide) one of approaches may be to deploy load generators in places where users are
located. For mobile systems network emulation remains the most viable option due to
the variances in the network types that can be used. Some load testing tools have built-
in network emulation tools and there are standalone tools for network emulation.

The load generation tools should be properly deployed and the monitoring tools should
be configured to collect all necessary metrics for the test. The list of metrics depends
on the test objectives, but it is recommended to collect at least basic metrics for all
tests (see Section 2.1.2).

Depending on the load, specific tool / load generation approach, and machine
configuration, more than one load generation machine may be needed. To verify the
setup, machines involved in load generation should be monitored too. This will help
avoid a situation where the load is not maintained properly because one of the load
generators is running slowly.

Depending on the setup and tools used, load testing tools need to be configured to
create the appropriate load. For example, specific browser emulation parameters may
be set or IP spoofing (simulating that each virtual user has a different IP address) may
be used.

Before tests are executed, the environment and setup must be validated. This is
usually done by conducting a controlled set of tests and verifying the outcome of the

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 50 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

tests as well as checking that the monitoring tools are tracking the important
information.

To verify that the test works as designed, a variety of techniques may be used,
including log analysis and verifying database content. Preparing for the test includes
checking that required information gets logged, the system is in the proper state, etc.
For example, if the test changes the state of the system significantly (add / change
information in database), it may be necessary to return the system to the original state
before repeating the test.

4.3 Execution

Performance test execution involves generation of a load against the SUT according
to a load profile (usually implemented by performance testing scripts invoked according
to a given scenario), monitoring all parts of the environment, and collecting and keeping
all results and information related to the test. Usually advanced load testing tools /
harnesses perform these tasks automatically (after, of course, proper configuration).
They generally provide a console to enable performance data to be monitored during
the test and permit necessary adjustments to be made (see Section 5.1). However,
depending on the tool used, the SUT, and the specific tests being executed, some
manual steps may be needed.

Performance tests are usually focused on a steady state of the system, i.e., when the
system’s behavior is stable. For example, when all simulated users / threads are
initiated and are performing work as designed. When the load is changing (for example,
when new users are added), the system’s behavior is changing and it becomes more
difficult to monitor and analyze test results. The stage of getting to the steady state is
often referred to as the ramp-up, and the stage of finishing the test is often referred to
as the ramp-down.

It is sometimes important to test transient states, when the system’s behavior is
changing. This may apply, for example, to the concurrent logging of a large number of
users or spike tests. When testing transient states it is important to understand the
need for careful monitoring and analysis of the results, as some standard
approaches—such as monitoring averages—may be very misleading.

During the ramp-up it is advisable to implement incremental load states to monitor the
impact of the steadily increasing load on the system’s response. This ensures that
sufficient time is allocated for the ramp-up and that the system is able to handle the
load. Once the steady state has been reached, it is a good practice to monitor that both
the load and the system’s responses are stable and that random variations (which
always exist) are not substantial.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 51 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

It is important to specify how failures should be handled to make sure that no system
issues are introduced. For example, it may be important for the user to logout when a
failure occurs to ensure that all resources associated with that user are released.

If monitoring is built into the load testing tool and it is properly configured, it usually
starts at the same time as the test execution. However, if stand-alone monitoring tools
are used, monitoring should be started separately and the necessary information
collected such that subsequent analysis can be carried out together with the test
results. The same is true for log analysis. It is essential to time-synchronize all tools
used, so that all information related to a specific test execution cycle can be located.

Test execution is often monitored using the performance test tool’s console and real-
time log analysis to check for issues and errors in both the test and the SUT. This helps
to avoid needlessly continuing with running large-scale tests, which might even impact
other systems if things go wrong (e.g., if failure occur, components fail or the generated
loads are too low or high). These tests can be expensive to run and it may be necessary
to stop the test or make some on-the-fly adjustments to the performance test or the
system configuration if the test deviates from the expected behavior.

One technique for verifying load tests which are communicating directly on the protocol
level is to run several GUI-level (functional) scripts or even to execute similar
operational profiles manually in parallel to the running load test. This checks that
response times reported during the test only differ from the response times measured
manually at the GUI level by the time spent on the client side.

In some cases when running performance testing in an automated way (for example,
as a part of Continuous Integration, as discussed in Section 3.4) checks must be done
automatically, since manual monitoring and intervention may not be possible. In this
case, the test set up should be able to recognize any deviations or problems and issue
an alert (usually while properly completing the test). This approach is easier to
implement for regression performance tests when the system’s behavior is generally
known, but may be more difficult with exploratory performance tests or large-scale
expensive performance tests that may need adjustments to be made dynamically
during the test.

4.4 Analyzing Results and Reporting

Section 4.1.2 discussed the various metrics in a performance test plan. Defining these
up front determines what must be measured for each test run. After completion of a
test cycle, data should be collected for the defined metrics.

When analyzing the data it is first compared to the performance test objective. Once
the behavior is understood, conclusions can be drawn which provide a meaningful
summary report that includes recommended actions. These actions may include

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 52 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

changing physical components (e.g., hardware, routers), changing software (e.g.,
optimizing applications and database calls), and altering the network (e.g., load
balancing, routing).

The following data is typically analyzed:

 Status of simulated (e.g., virtual) users. This needs to be examined first. It
is normally expected that all simulated users have been able to accomplish the
tasks specified in the operational profile. Any interruption to this activity would
mimic what an actual user may experience. This makes it very important to first
see that all user activity is completed since any errors encountered may
influence the other performance data.

 Transaction response time. This can be measured in multiple ways, including
minimum, maximum, average, and a percentile (e.g., 90th). The minimum and
maximum readings show the extremes of the system performance. The average
performance is not necessarily indicative of anything other than the
mathematical average and can often be skewed by outliers. The 90th percentile
is often used as a goal since it represents the majority of users attaining a
specific performance threshold. It is not recommended to require 100%
compliance with the performance objectives as the resources required may be
too large and the net effect to the users will often be minor.

 Transactions per second. This provides information on how much work was
done by the system (system throughput).

 Transaction failures. This data is used when analyzing transactions per
second. Failures indicate the expected event or process did not complete, or
did not execute. Any failures encountered are a cause for concern and the root
cause must be investigated. Failed transactions may also result in invalid
transactions per second data since a failed transaction will take far less time
than a completed one.

 Hits (or requests) per second. This provides a sense of the number of hits to
a server by the simulated users during each second of the test.

 Network throughput. This is usually measured in bits by time interval, as in
bits per second. This represents the amount of data the simulated users receive
from the server every second. (see Section 4.2.5)

 HTTP responses. These are measured per second and include possible
response codes such as: 200, 302, 304, 404, the latter indicating that a page is
not found.

Although much of this information can be presented in tables, graphical
representations make it easier to view the data and identify trends.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 53 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Techniques used in analyzing data can include:
 Comparing results to stated requirements
 Observing trends in results
 Statistical quality control techniques
 Identifying errors
 Comparing expected and actual results
 Comparing the results to prior test results
 Verifying proper functioning of components (e.g., servers, networks)

Identifying correlation between metrics can help us understand at what point system
performance begins to degrade. For example, what number of transactions per second
were processed when the CPU reached 90% capacity and the system slowed?

Analysis can help identify the root cause of the performance degradation or failure,
which in turn will facilitate correction. Confirmation testing will help determine if the
corrective action addressed the root cause.

Reporting
Analysis results are consolidated and compared against the objectives stated in the
performance test plan. These may be reported in the overall test status report together
with other test results, or included in a dedicated report for performance testing. The
level of detail reported should match the needs of the stakeholders. The
recommendations based on these results typically address software release criteria
(including target environment) or required performance improvements.

A typical performance testing report may include:

Executive Summary
This section is completed once all performance testing has been done and all results
have been analyzed and understood. The goal is to present concise and
understandable conclusions, findings, and recommendations for management with the
goal of an actionable outcome.

Test Results
Test results may include some or all of the following information:

 A summary providing an explanation and elaboration of the results.
 Results of a baseline test that serves as “snapshot” of system performance at

a given time and forms the basis of comparison with subsequent tests. The
results should include the date/time the test started, the concurrent user goal,
the throughput measured, and key findings. Key findings may include overall
error rate measured, response time and average throughput.

 A high-level diagram showing any architectural components that could (or did)
impact test objectives.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 54 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

 A detailed analysis (tables and charts) of the test results showing response
times, transaction rates, error rates and performance analysis. The analysis
also includes a description of what was observed, such as at what point a
stable application became unstable and the source of failures (e.g., web
server, database server).

Test Logs/Information Recorded
A log of each test run should be recorded. The log typically includes the following:

 Date/time of test start
 Test duration
 Scripts used for test (including script mix if multiple scripts are used) and

relevant script configuration data
 Test data file(s) used by the test
 Name and location of data/log files created during test
 HW/SW configuration tested (especially any changes between runs)
 Average and peak CPU and RAM utilization on web and database servers
 Notes on achieved performance
 Defects identified

Recommendations
Recommendations resulting from the tests may include the following:

 Technical changes recommended, such as reconfiguring hardware or software
or network infrastructure

 Areas identified for further analysis (e.g., analysis of web server logs to help
identify root causes of issues and/or errors)

 Additional monitoring required of gateways, servers, and networks so that
more detailed data can be obtained for measuring performance characteristics
and trends (e.g., degradation)

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 55 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

5. Tools – 90 mins.

Keywords

load generator, load management, monitoring tool, performance testing tool

Learning Objectives

5.1 Tool Support
PTFL-5.1.1 (K2) Understand how tools support performance testing

5.2 Tool Suitability
PTFL-5.2.1 (K4) Evaluate the suitability of performance testing tools in a given

project scenario

5.1 Tool Support

Performance testing tools include the following types of tool to support performance
testing.

Load Generators
The generator, through an IDE, script editor or tool suite, is able to create and execute
multiple client instances that simulate user behavior according to a defined operational
profile. Creating multiple instances in short periods of time will cause load on a system
under test. The generator creates the load and also collects metrics for later reporting.

When executing performance tests the objective of the load generator is to mimic the
real world as much as is practical. This often means that user requests coming from
various locations are needed, not just from the testing location. Environments that are
set up with multiple points of presence will distribute where the load is originating from
so that it is not all coming from a single network. This provides realism to the test,
though it can sometimes skew results if intermediate network hops create delays.

Load Management Console
The load management console provides the control to start and stop the load
generator(s). The console also aggregates metrics from the various transactions that
are defined within the load instances used by the generator. The console enables
reports and graphs from the test executions to be viewed and supports results analysis.

Monitoring Tool
Monitoring tools run concurrently with the component or system under test and
supervise, record and/or analyze the behavior of the component or system. Typical
components which are monitored include web server queues, system memory and disk
space. Monitoring tools can effectively support the root cause analysis of performance

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 56 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

degradation in a system under test and may also be used to monitor a production
environment when the product is released. During performance test execution
monitors may also be used on the load generator itself.

License models for performance test tools include the traditional seat/site based
license with full ownership, a cloud-based pay-as-you-go license model, and open
source licenses which are free to use in a defined environment or through cloud-based
offerings. Each model implies a different cost structure and may include ongoing
maintenance. What is clear is that for any tool selected, understanding how that tool
works (through training and/or self-study) will require time and budget.

5.2 Tool Suitability

The following factors should be considered when selecting a performance testing tool:

Compatibility
In general a tool is selected for the organization and not only for a project. This means
considering the following factors in the organization:

 Protocols: As described in Section 4.2.1, protocols are a very important aspect
to performance tool selection. Understanding which protocols a system uses
and which of these will be tested will provide necessary information in order to
evaluate the appropriate test tool.

 Interfaces to external components: Interfaces to software components or other
tools may need to be considered as part of the complete integration
requirements to meet process or other inter-operability requirements (e.g.,
integration in the CI process).

 Platforms: Compatibility with the platforms (and their versions) within an
organization is essential. This applies to the platforms used to host the tools and
the platforms with which the tools interact for monitoring and/or load generation.

Scalability
Another factor to consider is the total number of concurrent user simulations the tool
can handle. This will include several factors:

 Maximum number of licenses required
 Load generation workstation/server configuration requirements
 Ability to generate load from multiple points of presence (e.g., distributed

servers)

Understandability
Another factor to consider is the level of technical knowledge needed to use the tool.
This is often overlooked and can lead to unskilled testers incorrectly configuring tests,
which in turn provide inaccurate results. For testing requiring complex scenarios and a
high level of programmability and customization, teams should ensure that the tester
has the necessary skills, background, and training.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 57 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

Monitoring
Is the monitoring provided by the tool sufficient? Are there other monitoring tools
available in the environment that can be used to supplement the monitoring by the
tool? Can the monitoring be correlated to the defined transactions? All of these
questions must be answered to determine if the tool will provide the monitoring required
by the project.

When monitoring is a separate program/tools/whole stack then it can be used to
monitor production environment when the product is released.

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 58 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

6. References

6.1 Standards

 [ISO25000] ISO/IEC 25000:2005, Software Engineering - Software Product
Quality Requirements and Evaluation (SQuaRE)

6.2 ISTQB Documents

 [ISTQB_UT_SYL] ISTQB Foundation Level Usability Testing Syllabus, Version
 2018

 [ISTQB_ALTA_SYL] ISTQB Advanced Level Test Analyst Syllabus, Version
 2012

 [ISTQB_ALTTA_SYL] ISTQB Advanced Level Technical Test Analyst
 Syllabus, Version 2012

 [ISTQB_ALTM_SYL] ISTQB Advanced Level Test Manager Syllabus, Version
 2012

 [ISTQB_FL_SYL] ISTQB Foundation Level (Core) Syllabus, Version 2018
 [ISTQB_FL_AT] ISTQB Foundation Level Agile Tester Syllabus, Version 2014
 [ISTQB_GLOSSARY] ISTQB Glossary of Terms used in Software Testing,

http://glossary.istqb.org

6.3 Books

[Anderson01] Lorin W. Anderson, David R. Krathwohl (eds.) “A Taxonomy for
Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of
Educational Objectives”, Allyn & Bacon, 2001, ISBN 978-0801319037

[Bath14] Graham Bath, Judy McKay, “The Software Test Engineer’s Handbook”,
Rocky Nook, 2014, ISBN 978-1-933952-24-6

 [Molyneaux09] Ian Molyneaux, “The Art of Application Performance Testing: From
Strategy to Tools”, O’Reilly, 2009, ISBN: 9780596520663

[Microsoft07] Microsoft Corporation, “Performance Testing Guidance for Web
Applications”, Microsoft, 2007, ISBN: 9780735625709

Certified Tester

Foundation Level Syllabus – Performance Testing

Version 2018 Page 59 of 59 9 December 2018
© International Software Testing Qualifications Board ISTQB public release version

7. Index

acceptance criteria, 29, 31, 34
acceptance testing, 14
aggregation, 20
architectures, 25
batch processing, 41
capacity, 11
capacity testing, 10, 13
common failures, 15
communication protocols, 38
component integration testing, 13
concurrency, 44
concurrency testing, 10, 13
dynamic testing, 13
efficiency, 10
endurance testing, 10, 12
environment deployment, 48
experimentation, 11
GQM, 19
hits, 52
IaaS, 48
load generation, 14, 49, 55
load profile, 40, 42, 43
load testing, 10, 12
management console, 55
measurements, 17
metrics, 17, 20, 36
monitoring, 51
monitoring tools, 21
operational profile, 40, 42, 46
performance test script, 45, 46
performance test tools, 21, 35, 56
performance testing, 10, 12
performance testing principles, 11
protocols, 38, 46, 56

quality risks, 27
ramp-down, 50
ramp-up, 50
resource utilization, 11
response time, 18, 39
reviews, 13
risks, 25, 27, 37
SaaS, 48
scalability testing, 10, 12
service virtualization, 48
spike testing, 10, 12
stakeholder communication, 37
stakeholders, 32
standards

ISO 25010, 10
static testing, 13
stress testing, 10, 12
system configuration, 35
system integration testing, 14
system testing, 14
system throughput, 44
systems of systems, 41
test data, 34
test environment, 35, 48, 55
test log, 54
test process, 23
think time, 44, 47
throughput, 44, 52
time behavior, 11
transaction failures, 52
transaction response time, 39, 52
transactions, 39
unit testing, 13
virtual user, 42, 44, 47, 52

